FRG: Collaborative Research: Analysis of the Einstein Constraint Equations
FRG:合作研究:爱因斯坦约束方程的分析
基本信息
- 批准号:1263544
- 负责人:
- 金额:$ 15.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1265187, 1262982, 1263431, 1263544PI: Rafe R Mazzeo, Stanford University PI: Michael Holst, University of California - San Diego PI: Jim Isenberg, University of Oregon PI: David Maxell, University of AlaskaThe goal of this project is to understand the extent to which one can parametrize and construct initial data sets for the Einstein evolution equations. We plan to capitalize on the recent progress using the conformal method to obtain new existence results in the nonconstant mean curvature (non-CMC) setting, to understand the limits of these methods, and then to develop alternate techniques toward these same goals, including degree theory, a priori estiimates, and gluing methods. The Lichnerowicz equation, central to the conformal method, is a semilinear elliptic equation. Due to the mixed sign of its nonlinear exponents, it is of a type not yet fully understood. The full Lichnerowicz-Choquet-Bruhat-York set of equations is a more difficult coupled system which incorporates features presenting new analytic subtleties. The ultimate aim is to provide a complete parametrization of initial data sets, particularly in the non-CMC setting, not only on compact backgrounds but also for manifolds with asymptotically Euclidean, hyperbolic or cylindrical ends, all of which are highly relevant for physical applications. In exploring new methods, we plan to use new and advanced analytical tools, as well as increasingly accurate and flexible numerical simulation techniques. Technical advances made in the course of this project should have a substantial application to many other equations of this general type which play important roles in other parts of pure and applied mathematics and mathematical physics. Einstein's gravitational field theory is a remarkably accurate mathematical model of gravitational physics, which does an excellent job of predicting and modeling gravitational phenomena at both the astrophysical and cosmological scales. It is consistent with every known gravitational observation and experiment. From the point of view of underlying mathematics, Einstein's theory involves two very distinct types of equations. The study of dynamics of gravitational fields involves the analysis of the Einstein equations as a nonlinear system of time-dependent evolution partial differential equations (PDE), while the study of initial data sets representing gravitational states involves Riemannian geometry and the study of the Einstein constraint equations as a nonlinear system of time-independent PDE.The last decade has witnessed remarkable progress in under- standing both equations. This project focuses on developing a more complete understanding of the constraint equations. The study of the Einstein equations presents a very important point of contact between mathematics and physics, one which has motivated many advances in differential geometry and PDE on the one side, and which also has provided a compelling and accurate model of the physical world, both on the astrophysical and on the cosmological scales. This project has the potential for settling significant open questions in this area.
AbstractAward:DMS 1265187、1262982、1263431、1263544 PI:Rafe R Mazzeo,斯坦福大学PI:Michael Holst,加州-圣地亚哥大学PI:Jim Isenberg,俄勒冈州大学PI:大卫麦克赛尔,该项目的目标是了解人们可以在多大程度上参数化并构建爱因斯坦演化的初始数据集方程我们计划利用最近的进展,使用保形方法在非恒定平均曲率(非CMC)设置中获得新的存在结果,了解这些方法的局限性,然后开发替代技术,包括度理论,先验估计和胶合方法。保角方法的核心Lichnerowicz方程是一个半线性椭圆方程。由于其非线性指数的混合符号,它是一种尚未完全理解的类型。完整的Lichnerowicz-Choquet-Bruhat-York方程组是一个更困难的耦合系统,它包含了新的分析微妙的功能。最终目标是提供初始数据集的完整参数化,特别是在非CMC设置中,不仅在紧凑背景上,而且还针对具有渐进欧几里得、双曲或圆柱端点的流形,所有这些都与物理应用高度相关。 在探索新方法的过程中,我们计划使用新的先进分析工具,以及越来越精确和灵活的数值模拟技术。在这个项目的过程中取得的技术进步应该有大量的应用到许多其他方程的这种一般类型发挥重要作用的其他部分的纯数学和应用数学和数学物理。爱因斯坦的引力场理论是一个非常精确的引力物理学数学模型,它在天体物理和宇宙学尺度上预测和建模引力现象方面做得非常出色。这与所有已知的引力观测和实验都是一致的。从基础数学的观点来看,爱因斯坦的理论涉及两种非常不同的方程。引力场动力学的研究包括将爱因斯坦方程作为一个非线性的含时演化偏微分方程(PDE)系统进行分析,而对引力态初始数据集的研究涉及到黎曼几何和爱因斯坦约束方程作为一个非线性的时间无关偏微分方程组的研究。这两个等式。这个项目的重点是开发一个更完整的理解约束方程。爱因斯坦方程的研究是数学和物理之间非常重要的联系点,一方面推动了微分几何和偏微分方程的许多进展,另一方面也提供了物理世界令人信服且准确的模型,无论是在天体物理学还是在宇宙学尺度上。该项目有可能解决这一领域的重大未决问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Maxwell其他文献
On the Effects of Automatically Generated Adjunct Questions for Search as Learning
关于自动生成附加问题对搜索学习的影响
- DOI:
10.1145/3627508.3638332 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Peide Zhu;A. Câmara;Nirmal Roy;David Maxwell;C. Hauff - 通讯作者:
C. Hauff
A ug 2 00 3 Solutions of the Einstein Constraint Equations with Apparent Horizon Boundary
具有视视界边界的爱因斯坦约束方程的 A ug 2 00 3 解
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
David Maxwell - 通讯作者:
David Maxwell
Rough solutions of the Einstein constraint equations on compact manifolds
紧流形上爱因斯坦约束方程的粗解
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
David Maxwell - 通讯作者:
David Maxwell
Rough solutions of the Einstein constraint equations
- DOI:
10.1515/crelle.2006.001 - 发表时间:
2004-05 - 期刊:
- 影响因子:0
- 作者:
David Maxwell - 通讯作者:
David Maxwell
Solutions of the Einstein Constraint Equations with Apparent Horizon Boundaries
具有视视界边界的爱因斯坦约束方程的解
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
David Maxwell - 通讯作者:
David Maxwell
David Maxwell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Maxwell', 18)}}的其他基金
Missionaries and Africans in the Making of Colonial Knowledge in Belgian Congo
传教士和非洲人在比属刚果创造殖民知识
- 批准号:
RES-000-23-1535 - 财政年份:2006
- 资助金额:
$ 15.65万 - 项目类别:
Research Grant
相似海外基金
FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
- 批准号:
2244978 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245111 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245077 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2244879 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
- 批准号:
2245171 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2403764 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245021 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245097 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
- 批准号:
2245147 - 财政年份:2023
- 资助金额:
$ 15.65万 - 项目类别:
Continuing Grant