Collaborative Research: Advancing the Diagnosis and Quantification of Mitral Valve Regurgitation with Mathematical Modeling

合作研究:通过数学建模推进二尖瓣反流的诊断和量化

基本信息

  • 批准号:
    1263580
  • 负责人:
  • 金额:
    $ 34.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2017-09-30
  • 项目状态:
    已结题

项目摘要

Mitral regurgitation (MR) is a valvular disease in which the mitral valve does not close properly, thereby allowing blood to flow backward from the left ventricle to the left atrium of the heart. MR is among the most prevalent valve problems in the Western world. Doppler echocardiography has recently emerged as the method of choice for the non-invasive detection and evaluation of MR severity. However, due to the various color Doppler limitations, the accurate quantification of MR remains one of the major challenges in modern echocardiography. This is particularly the case with eccentric, wall-hugging regurgitant jets, known as the Coanda effect. This form of MR is currently very difficult to quantify and may lead to gross under-estimation of regurgitant volume by inexperienced cardiovascular observers. Using mathematical modeling, bifurcation analysis, and numerical simulations, combined with the in vitro experimental modeling of MR, and clinical experience, the investigators are developing a state-of-the-art tool for accurate non-invasive assessment of mitral regurgitation. The mathematical approach utilizes the most recent advances in fluid-structure interaction, modeling the flow of an incompressible, viscous fluid, coupled with the motion of an elastic regurgitant orifice simulating the regurgitant valve. A bifurcation diagram providing the information about different types of MR is being developed. The in vitro model is based on a pulsatile flow loop incorporating a mock imaging chamber, which contains a regurgitant orifice simulating the flow conditions encountered in patients with MR.This is an exciting, new study, addressing a significant problem in the development of non-invasive diagnostic tools for the quantification of valvular regurgitation. The interdisciplinary team of investigators is developing sophisticated novel mathematics, high performance computing, and in vitro experimental tools, which, when used together, provide novel information about the severity of mitral valve regurgitation, that could not be obtained by using each individual approach separately. Based on this collaborative endeavor, detailed information about the blood flow conditions in patient regurgitant valves will be obtained, that could not be obtained by using classical 2D or even 3D echocardiography. This information will be used to quantify the severity of MR, which is the fundamental data on which surgical interventions are decided. The complementary mathematical tools, combined with the echocardiographic images, and clinical experience, support the next step in the evolution of modern 3D echocardiography for non-invasive diagnosis of pathological complex intra-cardiac flows. The broader impacts will be achieved through student education via interdisciplinary training and interdisciplinary course preparation. Two of the investigators are women, and active recruitment of women and minorities will continue. This project contributes toward building a strong partnership between academia (University of Houston) and health/medical industry (The Methodist Hospital).
二尖瓣返流(MR)是一种瓣膜疾病,其中二尖瓣不能正确关闭,从而允许血液从左心室回流到心脏的左心房。二尖瓣返流是西方世界最普遍的瓣膜问题之一。多普勒超声心动图最近已成为非侵入性检测和评价二尖瓣返流严重程度的首选方法。然而,由于各种彩色多普勒的限制,MR的准确定量仍然是现代超声心动图的主要挑战之一。这是特别的情况下,偏心,贴壁射流,被称为柯恩达效应。这种形式的二尖瓣返流目前很难量化,可能导致经验不足的心血管观察者严重低估二尖瓣返流量。研究人员利用数学建模、分叉分析和数值模拟,结合MR的体外实验建模和临床经验,正在开发一种最先进的工具,用于准确无创评估二尖瓣返流。数学方法利用流体-结构相互作用的最新进展,模拟不可压缩粘性流体的流动,再加上模拟阻尼阀的弹性阻尼孔的运动。一个分叉图提供有关不同类型的MR的信息正在开发中。体外模型是基于脉动流回路纳入模拟成像室,其中包含一个模拟MR患者遇到的流动条件的返流孔。这是一个令人兴奋的,新的研究,解决了一个重要的问题,在开发非侵入性诊断工具的瓣膜返流的量化。跨学科的研究团队正在开发复杂的新型数学,高性能计算和体外实验工具,当它们一起使用时,可以提供有关二尖瓣返流严重程度的新信息,这些信息无法通过单独使用每种方法获得。基于这种合作奋进,将获得关于患者瓣膜中血流状况的详细信息,这是使用经典的2D甚至3D超声心动图无法获得的。该信息将用于量化二尖瓣返流的严重程度,这是决定手术干预的基本数据。互补的数学工具,结合超声心动图图像和临床经验,支持现代3D超声心动图发展的下一步,用于病理复杂心内血流的无创诊断。更广泛的影响将通过跨学科培训和跨学科课程准备的学生教育来实现。其中两名调查员是妇女,将继续积极征聘妇女和少数族裔。该项目有助于建立学术界(休斯顿大学)和健康/医疗行业(卫理公会医院)之间的强有力的伙伴关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Little其他文献

SUCCESSFUL MANAGEMENT OF ACUTE SALMONELLA AORTITIS
  • DOI:
    10.1016/s0735-1097(17)35529-8
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Eleonora Avenatti;Stefan A. Ianchulev;Mark D. Iafrati;Stephen Little;Natesa Pandian
  • 通讯作者:
    Natesa Pandian
LATE MITRACLIP SINGLE LEAFLET DETACHMENT: THIRD CLIP IS A CHARM
  • DOI:
    10.1016/s0735-1097(19)32989-4
  • 发表时间:
    2019-03-12
  • 期刊:
  • 影响因子:
  • 作者:
    Nadeen Faza;Colin Barker;Stephen Little
  • 通讯作者:
    Stephen Little
TCT CONNECT-351 Percutaneous Interventions for Recurrent Mitral Regurgitation After Surgical Repair: Decision-Making Algorithm and Long-Term Outcomes for MitraClip
  • DOI:
    10.1016/j.jacc.2020.09.372
  • 发表时间:
    2020-10-27
  • 期刊:
  • 影响因子:
  • 作者:
    Joe Aoun;Eleonora Avenatti;Neal Kleiman;Stephen Little;Colin Barker;Madiha Khan;Isaac Tea;G.M. Lawrie;Sachin Goel
  • 通讯作者:
    Sachin Goel
EFFECTIVE ORIFICE AREA BY CARDIAC MAGNETIC RESONANCE FOR THE FUNCTIONAL ASSESSMENT OF BIOPROSTHETIC AORTIC VALVES
  • DOI:
    10.1016/s0735-1097(15)61296-7
  • 发表时间:
    2015-03-17
  • 期刊:
  • 影响因子:
  • 作者:
    Dimitrios Maragiannis;Matthew Jackson;Jose Flores-Arrendondo;Paulino Alvarez;Autry Kyle;William Zoghbi;Dipan Shah;Stephen Little;Stephen Little
  • 通讯作者:
    Stephen Little
PATIENT WITH A SYSTOLIC MURMUR AND SHOCK: IMPORTANCE OF THE PHYSICAL
  • DOI:
    10.1016/s0735-1097(17)35750-9
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Mahwash Kassi;Eleonora Avenatti;Stephen Little;Gerald Lawrie;William Zoghbi
  • 通讯作者:
    William Zoghbi

Stephen Little的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Little', 18)}}的其他基金

Workshop for College Teachers of Introductory Astronomy
大学天文学导论教师讲习班
  • 批准号:
    9455083
  • 财政年份:
    1995
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
University of Colorado Workshop for College Teachers of Introductory Astronomy
科罗拉多大学天文学入门大学教师讲习班
  • 批准号:
    9353926
  • 财政年份:
    1994
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414607
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414606
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414608
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414605
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341237
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
  • 批准号:
    2414604
  • 财政年份:
    2024
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Continuing Grant
Collaborative Research: Advancing Collaborations for Equity in Marine and Climate Sciences
合作研究:推进海洋和气候科学公平合作
  • 批准号:
    2314916
  • 财政年份:
    2023
  • 资助金额:
    $ 34.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了