CAREER: Compressed Sensing Magnetic Resonance Imaging
职业:压缩传感磁共振成像
基本信息
- 批准号:1265612
- 负责人:
- 金额:$ 24.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0846514L. YingThe research objective of this CAREER proposal is to apply compressed sensing, a new theoretical framework, to magnetic resonance imaging (MRI) to revolutionize its imaging speed and enable real-time imaging. The proposed research investigates various issues in transforming the new mathematical theory into MRI practice and explores various ideas to address these issues. Specifically, to meet the conditions required by the compressed sensing theory, novel non-adaptive, non-Fourier encoding and sampling techniques will be developed, novel sparse transformations will be discovered to represent MR images most efficiently, and efficient and robust nonlinear reconstruction algorithms will also be developed to recover the images from sparsely sampled data. Integration with the existing fast MRI techniques for maximal acceleration will also be studied. Furthermore, the proposed research will evaluate performance by deriving theoretical bounds on speed enhancements and carrying out simulation and experiments. Applications of the developed techniques will be explored for various practical MR imaging problems. The educational objective of this proposal is to develop an effective educational framework for systematic delivery of both basic knowledge and new discoveries in biomedical imaging to a diverse body of students, and create an infrastructure for resource sharing. The proposed educational plan features a new biomedical imaging curriculum, activities to integrate research and education with special efforts to increase women and minority in engineering, and an open platform to disseminate results and share resources in image reconstruction.
0846514L。 Ying这个CAREER提案的研究目标是将压缩感知这一新的理论框架应用于磁共振成像(MRI),彻底改变其成像速度并实现实时成像。拟议的研究调查了将新数学理论转化为 MRI 实践的各种问题,并探索了解决这些问题的各种想法。具体来说,为了满足压缩感知理论所需的条件,将开发新颖的非自适应、非傅里叶编码和采样技术,将发现新颖的稀疏变换来最有效地表示MR图像,并且还将开发高效且鲁棒的非线性重建算法以从稀疏采样数据中恢复图像。还将研究与现有快速 MRI 技术的集成以获得最大加速度。此外,拟议的研究将通过推导速度增强的理论界限并进行模拟和实验来评估性能。将探索所开发技术的应用,以解决各种实际的磁共振成像问题。该提案的教育目标是开发一个有效的教育框架,向不同的学生系统地传授生物医学成像的基础知识和新发现,并创建资源共享的基础设施。拟议的教育计划包括新的生物医学成像课程、将研究和教育结合起来的活动、特别努力增加工程领域的女性和少数族裔的人数,以及传播图像重建成果和共享资源的开放平台。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly accelerated cardiac cine parallel MRI using low-rank matrix completion and partial separability model
使用低秩矩阵完成和部分可分离模型的高度加速心脏电影并行 MRI
- DOI:10.1117/12.2225490
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Ahmad, Fauzia;Lyu, Jingyuan;Nakarmi, Ukash;Zhang, Chaoyi;Ying, Leslie
- 通讯作者:Ying, Leslie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leslie Ying其他文献
Improved Parallel Image Reconstruction using Feature Refinement
使用特征细化改进并行图像重建
- DOI:
10.1002/mrm.27024 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jing Cheng;Sen Jia;Leslie Ying;Yuanyuan Liu;Shanshan Wang;Yanjie Zhu;Ye Li;Chao Zou;Xin Liu;Dong Liang - 通讯作者:
Dong Liang
Iterative Feature Refinement for Accurate Undersampled MR Image Reconstruction(该论文被选为 “Highlights of 2016”)
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:3.5
- 作者:
Shanshan Wang;Jianbo Liu;Qiegen Liu;Leslie Ying;Xin Liu;Hairong Zheng;Dong Liang - 通讯作者:
Dong Liang
A plasmonic "rainbow" chip for intelligent spectrometer
用于智能光谱仪的等离子体“彩虹”芯片
- DOI:
10.1364/cleo_si.2023.sth3r.5 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Dylan Tua;Ruiying Liu;Lyu Zhou;Wenhong Yang;Haomin Song;Leslie Ying;Qiaoqiang Gan - 通讯作者:
Qiaoqiang Gan
Simultaneous Multicolor Spectroscopic Single-molecule Localization Microscopy Image Reconstruction using Machine Learning
使用机器学习同时进行多色光谱单分子定位显微图像重建
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
S. K. Gaire;Ethan Flowerday;J. Frederick;Ruyi Gong;Leslie Ying;Hao F. Zhang;Vadim Backman - 通讯作者:
Vadim Backman
Deep Learning-based Spectroscopic Single-molecule Localization Microscopy for Simultaneous Multicolor Imaging
基于深度学习的光谱单分子定位显微镜同时多色成像
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
S. K. Gaire;Ethan Flowerday;J. Frederick;Ruyi Gong;Sravya Prabhala;Leslie Ying;Hao F. Zhang;V. Backman - 通讯作者:
V. Backman
Leslie Ying的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leslie Ying', 18)}}的其他基金
Collaborative Research: In vivo Deep Tissue Imaging with Ultrafast, Volumetric Super-Resolution Microscopy
合作研究:利用超快体积超分辨率显微镜进行体内深层组织成像
- 批准号:
1604531 - 财政年份:2016
- 资助金额:
$ 24.73万 - 项目类别:
Standard Grant
CAREER: Compressed Sensing Magnetic Resonance Imaging
职业:压缩传感磁共振成像
- 批准号:
0846514 - 财政年份:2009
- 资助金额:
$ 24.73万 - 项目类别:
Continuing Grant
GOALI: Parallel MRI Using Phased Array Coils
GOALI:使用相控阵线圈的并行 MRI
- 批准号:
0731226 - 财政年份:2007
- 资助金额:
$ 24.73万 - 项目类别:
Standard Grant
相似海外基金
Sparsity-Based Autonomous Adaptability in Circuit and Systems Utilizing Compressed Sensing
利用压缩感知的电路和系统中基于稀疏性的自主适应性
- 批准号:
23K18463 - 财政年份:2023
- 资助金额:
$ 24.73万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
PhD in Compressed Sensing for Egocentric Video
自我中心视频压缩感知博士
- 批准号:
2894973 - 财政年份:2023
- 资助金额:
$ 24.73万 - 项目类别:
Studentship
Compressed sensingを用いた正確な口腔癌深達度の三次元的取得
利用压缩传感精确三维获取口腔癌浸润深度
- 批准号:
22K10174 - 财政年份:2022
- 资助金额:
$ 24.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Multidimensional OCT Imaging Enabled by Compressed Sensing
压缩感知实现多维 OCT 成像
- 批准号:
10674616 - 财政年份:2022
- 资助金额:
$ 24.73万 - 项目类别:
Learning Nonlinear Dynamics from Data Using Sparse Optimization and Compressed Sensing
使用稀疏优化和压缩感知从数据中学习非线性动力学
- 批准号:
RGPIN-2018-06135 - 财政年份:2022
- 资助金额:
$ 24.73万 - 项目类别:
Discovery Grants Program - Individual
Compressed sensing for medical applications
医疗应用的压缩传感
- 批准号:
EP/W015412/1 - 财政年份:2022
- 资助金额:
$ 24.73万 - 项目类别:
Research Grant
Multidimensional OCT Imaging Enabled by Compressed Sensing
压缩感知实现多维 OCT 成像
- 批准号:
10527816 - 财政年份:2022
- 资助金额:
$ 24.73万 - 项目类别:
Collaborative Research: CIF: Small: Low-Complexity Algorithms for Unsourced Multiple Access and Compressed Sensing in Large Dimensions
合作研究:CIF:小型:大维度无源多址和压缩感知的低复杂度算法
- 批准号:
2131115 - 财政年份:2021
- 资助金额:
$ 24.73万 - 项目类别:
Standard Grant
Development of EEG Measurement Circuit System by Compressed Sensing Using Random Sampling
利用随机采样的压缩感知开发脑电图测量电路系统
- 批准号:
21H03410 - 财政年份:2021
- 资助金额:
$ 24.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of high-speed coronary MRA imaging method using compressed sensing
利用压缩感知开发高速冠状动脉MRA成像方法
- 批准号:
21K07621 - 财政年份:2021
- 资助金额:
$ 24.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)