III: Medium: Collaborative Research: Spatial Data and Trajectory Data Management on GPUs

III:媒介:协作研究:GPU 上的空间数据和轨迹数据管理

基本信息

  • 批准号:
    1302439
  • 负责人:
  • 金额:
    $ 45.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Although locating and navigation devices embedded in smartphones have already generated large volumes of location and trajectory data, the next generation of consumer electronics are likely to generate even larger volumes of location-dependent data where spatial and trajectory data management techniques will play critical roles in understanding the data to facilitate decision making. Modern Graphics Processing Units (GPUs) are capable of general computing. Current generation of commodity GPUs have large numbers of processing cores, support even larger numbers of current threads and provide high memory bandwidth, yet are available at affordable prices. The massively data parallel computing power of GPUs makes the hardware ideal for spatial and trajectory data management which is both data and computing intensive.This project develops parallel indexing structures and query processing algorithms for spatial and trajectory data on GPUs to provide high performance which is crucial in speeding up existing applications and enabling new scientific and business inquiries. The project achieves its goals by developing: 1) novel spatial indexing techniques on GPUs; 2) novel spatial joins on GPUs; 3) novel trajectory segmentation and indexing techniques and trajectory similarity query processing techniques on GPUs; and 4) an end-to-end prototype system incorporated with open source database and GIS systems for performance evaluations and real world applications. Compared with existing spatial and trajectory data management systems that are mostly disk-resident and adopt a serial CPU computing model, the performance of GPU accelerated main-memory based systems is expected to achieve several orders of magnitude speedup and brings the performance of spatial and trajectory queries to a new level. The research results are beneficial to many applications, such as transportation, urban planning, wild bird ecology, and epidemiology of infectious diseases. Collaboration is carried out with transportation engineers at the University Transportation Research Center in New York City and ecology scientists at the University of Oklahoma?s Earth Observing and Modelling Facility. The project also makes important impacts on education as it provides training for students in the areas of national critical needs: database research, high performance computing, GPU programming, GIS, transportation, mobile and ecology applications. The developed algorithms and prototype system, real datasets and performance evaluation results are made available to the public at the Website: http://www.cs.ou.edu/~database.
虽然智能手机中嵌入的定位和导航设备已经产生了大量的位置和轨迹数据,但下一代消费电子产品可能会产生更大量的位置相关数据,其中空间和轨迹数据管理技术将在理解数据以促进决策方面发挥关键作用。现代图形处理单元(GPU)能够进行通用计算。当前一代的商品GPU具有大量的处理核心,支持甚至更大数量的当前线程,并提供高内存带宽,但价格实惠。GPU的大规模数据并行计算能力使硬件成为数据和计算密集型的空间和轨迹数据管理的理想选择。本项目开发GPU上的空间和轨迹数据的并行索引结构和查询处理算法,以提供高性能,这对于加速现有应用程序和实现新的科学和商业查询至关重要。 该项目通过开发:1)GPU上的新型空间索引技术; 2)GPU上的新型空间连接; 3)GPU上的新型轨迹分割和索引技术以及轨迹相似性查询处理技术;以及4)与开源数据库和GIS系统相结合的端到端原型系统,用于性能评估和真实的世界应用。与现有的大多数驻留在磁盘上并采用串行CPU计算模型的空间和轨迹数据管理系统相比,基于GPU加速的主存系统的性能有望实现几个数量级的加速,并将空间和轨迹查询的性能提升到一个新的水平。 研究成果对交通运输、城市规划、野鸟生态学、传染病流行病学等领域具有重要的应用价值。 合作是与纽约市大学交通研究中心的交通工程师和俄克拉荷马州大学的生态科学家进行的。地球观测和模拟设施。 该项目还对教育产生了重要影响,因为它为学生提供了国家关键需求领域的培训:数据库研究、高性能计算、图形处理器编程、地理信息系统、运输、移动的和生态应用。所开发的算法和原型系统、真实的数据集和性能评估结果可在网站http://www.cs.ou.edu/~database上向公众提供。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Le Gruenwald其他文献

Artificial Intelligence in Global Epidemics, Part 2
  • DOI:
    10.1007/s00354-022-00196-w
  • 发表时间:
    2022-11-23
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Gurdeep Singh Hura;Sven Groppe;Sarika Jain;Le Gruenwald
  • 通讯作者:
    Le Gruenwald
Optimizing the execution of XSLT stylesheets for querying transformed XML data
  • DOI:
    10.1007/s10115-008-0144-4
  • 发表时间:
    2008-06-11
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Sven Groppe;Jinghua Groppe;Stefan Böttcher;Thomas Wycisk;Le Gruenwald
  • 通讯作者:
    Le Gruenwald
Artificial Intelligence in Global Epidemics, Part 1
  • DOI:
    10.1007/s00354-021-00138-y
  • 发表时间:
    2021-11-09
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Gurdeep Singh Hura;Sven Groppe;Sarika Jain;Le Gruenwald
  • 通讯作者:
    Le Gruenwald
PRIVATE-IYE : A Framework for Privacy Preserving Data Integration
PRIVATE-IYE:隐私保护数据集成框架
Managing real-time database transactions in mobile ad-hoc networks
  • DOI:
    10.1007/s10619-006-7008-2
  • 发表时间:
    2007-01-20
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Le Gruenwald;Shankar M. Banik;Chuo N. Lau
  • 通讯作者:
    Chuo N. Lau

Le Gruenwald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Le Gruenwald', 18)}}的其他基金

III: Student Travel Fellowships for the 16th IEEE International Conference on Mobile Data Management (MDM 2015)
III:第 16 届 IEEE 国际移动数据管理会议 (MDM 2015) 学生旅行奖学金
  • 批准号:
    1520353
  • 财政年份:
    2015
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
EAGER: Cost- and Energy-Aware Query Processing in Mobile Clouds
EAGER:移动云中的成本和能源感知查询处理
  • 批准号:
    1349285
  • 财政年份:
    2013
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
POWRE: A Transaction Management Technique for Nomadic Multidatabases
POWRE:游牧多数据库事务管理技术
  • 批准号:
    9973465
  • 财政年份:
    1999
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
Main Memory Database Recovery Issues
主内存数据库恢复问题
  • 批准号:
    9201596
  • 财政年份:
    1992
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Continuing Grant

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
  • 批准号:
    2406648
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了