Nonlinear Markov processes, large weakly interacting particle systems, and applications
非线性马尔可夫过程、大型弱相互作用粒子系统及应用
基本信息
- 批准号:1305120
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This work considers systems with a large number of weakly interacting particles with Markovian dynamics, and nonlinear Markov processes that arise in the large particle limit. Such systems originally were considered in statistical mechanics, however in recent years studies in many different fields have led to similar stochastic dynamical models. Some examples include, loss network models, default clustering in large portfolios, chemotactic response dynamics, and belief systems in social sciences. The basic mathematical object is the empirical measure of the trajectories of the collection of particles. There is extensive work on the law of large number behavior(LLN), central limit theory and large deviation results for this object. For example, under conditions, this measure under a large particle limit converges to a deterministic measure that is characterized through a nonlinear evolution equation known as the McKean-Vlasov equation. Most of the existing theory concerns the behavior of the system on a finite time horizon. In the proposed work the interest is in the long time behavior of the empirical measure process and its LLN limit. More precisely, the goal is to develop a systematic stability theory for the associated Mckean-Vlasov equation, and to study its consequences for the time asymptotic behavior of the interacting particle system. Three specific families of models will be studied: (A) Finite state Markovian systems arising from communication networks; (B) Models for active biological transport; (C) Opinion dynamics models. In many applications the time asymptotic behavior of an interacting particle system of the above form is of central concern. For example, in communication systems stability and control is fundamental and one is interested in system design and control protocols that keep the state processes in the neighborhoods of desirable operating conditions over long periods of time. In applications coming from biological systems, one is primarily interested in describing aggregation, self organization and other pattern formations in the steady state of the system. In social science applications, such as opinion dynamics modeling, one of the key goals is to understand long term consensus formation mechanisms. All of these topics have in common the feature that they are related to the behavior of the large time limit of the associated empirical measure process, the study of which is the central goal of this research. Research in (A) will lead to ideas for improved design, stability, and regulation of complex communication networks. Research in (B) will provide insight and understanding for diverse pattern formations observed in biological systems. Research in (C) will enable development of minimal intervention protocols that lead to desirable long term consensus patterns.
本文考虑了具有马尔可夫动力学的大量弱相互作用粒子的系统,以及在大粒子极限下出现的非线性马尔可夫过程。这种系统最初是在统计力学中考虑的,然而近年来在许多不同领域的研究导致了类似的随机动力学模型。一些例子包括损失网络模型、大型投资组合中的默认聚类、趋化反应动力学和社会科学中的信念系统。基本的数学目标是对粒子集合的轨迹进行经验测量。针对这一问题,人们在大数行为定律(LLN)、中心极限理论和大偏差结果等方面做了大量的工作。例如,在某些条件下,在大粒子极限下的测量收敛于通过称为McKean-Vlasov方程的非线性演化方程表征的确定性测量。现有的大多数理论关注的是系统在有限时间范围内的行为。在提出的工作中,感兴趣的是经验测量过程的长时间行为及其LLN极限。更准确地说,目标是为相关的Mckean-Vlasov方程建立一个系统稳定性理论,并研究其对相互作用粒子系统的时间渐近行为的影响。将研究三种特定的模型族:(A)由通信网络产生的有限状态马尔可夫系统;(B)活性生物运输模型;(C)意见动态模型。在许多应用中,上述形式的相互作用粒子系统的时间渐近行为是中心问题。例如,在通信系统中,稳定性和控制是基本的,人们感兴趣的是系统设计和控制协议,这些协议可以使状态过程在长时间内保持在理想的运行条件附近。在来自生物系统的应用中,人们主要对描述系统稳定状态下的聚集、自组织和其他模式形成感兴趣。在社会科学应用中,如意见动态建模,关键目标之一是理解长期共识形成机制。所有这些主题都有一个共同的特点,即它们都与相关的经验测量过程的大时间限制的行为有关,这是本研究的中心目标。(A)的研究将导致改进复杂通信网络的设计、稳定性和管理的想法。(B)的研究将为在生物系统中观察到的各种模式形成提供见解和理解。(C)方面的研究将有助于制定最小干预方案,从而形成理想的长期共识模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amarjit Budhiraja其他文献
On near optimal trajectories for a game associated with the ∞-Laplacian
- DOI:
10.1007/s00440-010-0306-7 - 发表时间:
2010-06-09 - 期刊:
- 影响因子:1.600
- 作者:
Rami Atar;Amarjit Budhiraja - 通讯作者:
Amarjit Budhiraja
Ergodic control of resource sharing networks: lower bound on asymptotic costs
- DOI:
10.1007/s11134-024-09916-z - 发表时间:
2024-07-16 - 期刊:
- 影响因子:0.700
- 作者:
Amarjit Budhiraja;Michael Conroy;Dane Johnson - 通讯作者:
Dane Johnson
Deterministic and stochastic differential inclusions with multiple surfaces of discontinuity
- DOI:
10.1007/s00440-007-0104-z - 发表时间:
2008-01-31 - 期刊:
- 影响因子:1.600
- 作者:
Rami Atar;Amarjit Budhiraja;Kavita Ramanan - 通讯作者:
Kavita Ramanan
Amarjit Budhiraja的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amarjit Budhiraja', 18)}}的其他基金
RTG: Networks: Foundations in Probability, Optimization, and Data Sciences
RTG:网络:概率、优化和数据科学基础
- 批准号:
2134107 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Asymptotics for Particle Systems with Topological Interactions
具有拓扑相互作用的粒子系统的渐近
- 批准号:
2152577 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Estimating Probabilities of Rare Events in Interacting Particle Systems
估计相互作用粒子系统中罕见事件的概率
- 批准号:
1853968 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optimization and Equilibria with Expectation Functions: Analysis, Inference and Sampling
期望函数的优化和均衡:分析、推理和采样
- 批准号:
1814894 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Scaling Limits for some Stochastic Control Problems with Applications to Stochastic Networks
随机网络应用中一些随机控制问题的标度限制
- 批准号:
1004418 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Graduate Student Conference in Probability
概率研究生会议
- 批准号:
0856188 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
多源网络攻击下Markov跳变信息物理系
统的安全性分析与控制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于非周期间歇控制的Markov切换随机时滞系统的镇定及其应用研究
- 批准号:QN25A010026
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
DoS攻击下Semi-Markov跳变拓扑结构网络化协同运动系统预测控制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基于真实世界数据探讨针刺对脑卒中后肩痛患者康复结局的影响及成本-效用Markov分析
- 批准号:2024Y9524
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
基于患者报告结局的纵向数据构建连续时间Markov链与Cox风险比例
联合模型及精准患者分层管理的研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于 Hidden-Markov 理论的孤岛微电网负荷
频率鲁棒控制研究
- 批准号:Q24F030019
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
模型未知下Markov跳变系统事件触发滑模控制研究
- 批准号:62373002
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
隐semi-Markov过程驱动的双时间尺度时滞系统有限时间控制
- 批准号:62303016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于异步Markov切换的网络化区间状态估计及其控制
- 批准号:62373220
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
带有Markov链和随机脉冲的离散时间随机时滞系统的稳定性、控制及应用研究
- 批准号:12302034
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
- 批准号:
23K03152 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Structural Estimation and Optimization for Partially Observable Markov Decision Processes and Markov Games
职业:部分可观察马尔可夫决策过程和马尔可夫博弈的结构估计和优化
- 批准号:
2236477 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Potential theoretic approach to quasi-stationary phenomena of Markov processes
马尔可夫过程准平稳现象的潜在理论方法
- 批准号:
23KJ0236 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Symmetric Markov processes: sample path analysis and functional analytic properties
对称马尔可夫过程:样本路径分析和功能分析属性
- 批准号:
23H01076 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis on metric measure spaces by optimal transport theory and Markov processes
最优输运理论和马尔可夫过程对度量测度空间的分析
- 批准号:
22H04942 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
Markov Switching Processes and Financial Applications
马尔可夫转换过程和金融应用
- 批准号:
RGPIN-2018-04891 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Reinforcement Learning for Recursive Markov Decision Processes and Beyond
职业:递归马尔可夫决策过程及其他的强化学习
- 批准号:
2146563 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Large Markov decision processes and combinatorial optimisation
大马尔可夫决策过程和组合优化
- 批准号:
DP220102101 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Projects
New Algorithms for Markov Decision Processes and Reinforcement Learning
马尔可夫决策过程和强化学习的新算法
- 批准号:
2208163 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Dynamics of maps with memory, random maps, multi-valued maps and the geometric Markov Renewal processes
具有记忆的映射动力学、随机映射、多值映射和几何马尔可夫更新过程
- 批准号:
RGPIN-2017-05321 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual