Magnetoelectric Coupling in Low Symmetry Multiferroics

低对称多铁性材料中的磁电耦合

基本信息

  • 批准号:
    1306449
  • 负责人:
  • 金额:
    $ 30.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-15 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

****Technical Abstract****The goal of this project is to explore the physical basis for the concurrent magnetic and ferroelectric order that arises in multiferroic materials. The development of multiferroic order in materials is typically very tightly constrained by the symmetry of the lattice, which determines the transformation properties of the magnetic structure and the associated ferroelectric order. However, in low-symmetry crystals, the relative directions of the magnetic and ferroelectric structures are not restricted by symmetry, and expected to be determined only by the microscopic interactions. This project will focus on probing the microscopic interactions in multiferroics by studying the magnetic and ferroelectric order in iron vanadate, which is a low-symmetry material. These studies will use thermodynamic, magnetic, and electrical techniques to characterize the properties of iron vanadate samples, specifically the details of the magnetoelectric coupling. The microscopic interactions will be tuned by substitutional doping. This project will support the education and training of a PhD student, along with a number of undergraduate and high school studies. These students will be trained in a range of materials science techniques, including sample preparation, and sample characterization at low temperatures. Beyond the specialized training for these students, this project also included outreach efforts to introduce area high school students to current physics research topics as well as contributions to the development of a new Master's program in materials science. ****Non-Technical Abstract****Materials having magnetic properties, such has conventional disk drives, and materials having electrical properties, such as transistors, both have integral roles in modern electronic devices. Recently, researchers have identified a new class of materials that have both magnetic properties and a special kind of electrical property called ferroelectricity. These materials, called multiferroics, offer the potential for developing entirely new types of electronic devices, like magnetic storage that can be controlled using voltage pulses, or non-volatile computer memory that will maintain information even with the power switched off. This project will investigate how these simultaneous magnetic and electrical properties develop in a specific iron-based multiferroic. This will be accomplished using thermodynamic, magnetic, and electrical measurements, all at very low temperatures, with additional detail on the magnetic properties provided by neutron scattering studies. This project will clarify how these joint magnetic and electrical properties can be controlled, with the goal of eventually designing materials that can be incorporated into consumer devices. Along with furthering our basic understanding of these multiferroic materials, this project will provide important training for students. One PhD graduate student, three undergraduate students, and three high school students will learn about preparing materials and electrical and magnetic studies at low temperature. This project will provide a strong background for these students as they prepare for careers in advanced scientific research and technology development.
* 技术摘要 * 本项目的目标是探索多铁性材料中同时出现的磁性和铁电性有序的物理基础。 材料中多铁性有序的发展通常受到晶格对称性的非常严格的约束,这决定了磁性结构和相关铁电有序的变换特性。 然而,在低对称性晶体中,磁性和铁电结构的相对方向不受对称性的限制,并且预期仅由微观相互作用决定。 本计画将透过研究钒酸铁(一种低对称性材料)的磁性与铁电性序,探讨多重铁性材料中的微观交互作用。 这些研究将使用热力学,磁学和电学技术来表征铁钒酸盐样品的性质,特别是磁电耦合的细节。微观相互作用将通过替代掺杂来调节。 该项目将支持博士生的教育和培训,并沿着多项本科和高中学习。 这些学生将接受一系列材料科学技术的培训,包括样品制备和低温下的样品表征。 除了对这些学生的专业培训,该项目还包括推广工作,介绍地区高中学生目前的物理研究课题,以及在材料科学的一个新的硕士课程的发展作出贡献。* 非技术摘要 * 具有磁性的材料,如传统的磁盘驱动器,和具有电性能的材料,如晶体管,在现代电子设备中都有不可或缺的作用。 最近,研究人员发现了一类新的材料,它们既具有磁性,又具有一种特殊的电学性质,称为铁电性。 这些材料被称为多铁性材料,为开发全新类型的电子设备提供了潜力,比如可以使用电压脉冲控制的磁存储器,或者即使在电源关闭的情况下也能保持信息的非易失性计算机存储器。 本项目将研究这些同时的磁性和电性如何在特定的铁基多铁性中发展。 这将使用热力学,磁性和电气测量,所有在非常低的温度下完成,与中子散射研究提供的磁性的额外细节。 该项目将阐明如何控制这些联合磁和电特性,目标是最终设计出可用于消费设备的材料。 沿着我们对这些多铁性材料的基本了解,这个项目将为学生提供重要的训练。 一名博士研究生,三名本科生和三名高中生将学习在低温下制备材料和电磁研究。 该项目将为这些学生提供强大的背景,因为他们准备在先进的科学研究和技术开发的职业生涯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ratna Naik其他文献

Ratna Naik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ratna Naik', 18)}}的其他基金

Career Advancement Award: Ferromagnetic Resonance Studies of Single Crystal Magnetic Layered Structures
职业进步奖:单晶磁层状结构的铁磁共振研究
  • 批准号:
    9321127
  • 财政年份:
    1994
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant

相似国自然基金

基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

EAGER: Low-temperature Coupling of Methane Surrogates over Single Atom Catalysts: Elucidation of Elementary Reactions for C-C Bond Formation
EAGER:单原子催化剂上甲烷替代物的低温偶联:阐明 C-C 键形成的基本反应
  • 批准号:
    2328552
  • 财政年份:
    2023
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
Exploration of the strong coupling regime between the 3D cavity and super conducting quantum bits for low-mass wave-like dark matter searches
探索 3D 腔和超导量子比特之间的强耦合机制,用于低质量波状暗物质搜索
  • 批准号:
    23K13093
  • 财政年份:
    2023
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Electron-phonon coupling phenomena in low-dimensional and correlated materials
低维和相关材料中的电子声子耦合现象
  • 批准号:
    RGPIN-2019-07149
  • 财政年份:
    2022
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Discovery Grants Program - Individual
Test laboratory low calorific heat 4.0 with an ORC system for sector coupling
测试实验室低热热量 4.0,带有用于扇区耦合的 ORC 系统
  • 批准号:
    451955550
  • 财政年份:
    2021
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Major Research Instrumentation
Excellence in Research: Coupling of DNA Replication and Cell Division at Low Temperature in E. coli
卓越研究:大肠杆菌低温 DNA 复制与细胞分裂的耦合
  • 批准号:
    2101124
  • 财政年份:
    2021
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Standard Grant
Electron-phonon coupling phenomena in low-dimensional and correlated materials
低维和相关材料中的电子声子耦合现象
  • 批准号:
    RGPIN-2019-07149
  • 财政年份:
    2021
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Discovery Grants Program - Individual
Electron-phonon coupling phenomena in low-dimensional and correlated materials
低维和相关材料中的电子声子耦合现象
  • 批准号:
    RGPIN-2019-07149
  • 财政年份:
    2020
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Discovery Grants Program - Individual
Electron-phonon coupling phenomena in low-dimensional and correlated materials
低维和相关材料中的电子声子耦合现象
  • 批准号:
    DGECR-2019-00008
  • 财政年份:
    2019
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Discovery Launch Supplement
Creation of Low-bandgap Nanocarbon Materials on the Basis of the Development of Highly Efficient Coupling Reactions of Aromatic Rings
基于芳环高效偶联反应的低带隙纳米碳材料的制备
  • 批准号:
    19K05432
  • 财政年份:
    2019
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Search for anomalous physical properties via controlling of spin-orbit coupling effect of the Kitaev magnet with using low-temperature metathesis reaction
利用低温复分解反应控制基塔耶夫磁体自旋轨道耦合效应寻找异常物理性质
  • 批准号:
    19K14646
  • 财政年份:
    2019
  • 资助金额:
    $ 30.7万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了