Understanding A Few Nanoscale Light-Matter-Spin Interactions by Combining Ultrafast Optical Spectroscopy and Colloidal Quantum Functional Materials
通过结合超快光谱和胶体量子功能材料了解一些纳米级光-物质-自旋相互作用
基本信息
- 批准号:1307800
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****Technical Abstract****This award supports an experimental research program to understand emerging light-matter-spin involving processes within pre-designed zero-dimensional colloidal quantum structures by ultrafast optical spectroscopy. This research plan will directly involve graduate students training in tools and techniques needed to address a few fundamental issues: control of resonant plasmon-exciton interactions; realization of ultrafast spin control and echo in colloidal quantum structures by spin-plasmon and spin-phonon interactions; and development of new class of colloidal quantum magneto-semiconductor devices. Accomplishment of this project should advance our fundamental understanding and materials engineering of light assisted spin-dependent phenomena at the nanoscale. This work is additionally important because zero-dimensional quantum structures represent the smallest dimensional units that can be used for quantum information processing based on the spin degree of freedom. In addition to student training, this award will also allow to integrate cutting-edge research activities with undergraduate education program, K-12 outreach, classroom demonstration and teacher training.****Non-Technical Abstract****This award supports experimental research to understand and control various fundamental interactions that are of relevance to the spin of electron at the nanometer scale. Spin is an intrinsic quantum mechanical property of electron that can potentially lead to new technology and device development. Time-resolved spectroscopy that can provide extremely high temporal resolution with ultrashort light pulses will be applied to launch, probe and manipulate nanoscale spin-dependent processes. This will include application of ultrashort light pulse to create coupling of spin in semiconductor with plasmon (that is a collective motion of electrons in metal nanostructures) and phonon (that is atomic lattice collective motion in a solid), to manipulate spin of semiconductor quantum structures in a very fast time scale, and to discover novel interactions between spins of nanoscale magnets and semiconductors. This project will be accomplished by employing multidisciplinary experimental tools, including chemical synthesis of quantum structures, ultrafast optical spectroscopy and nano-device engineering, and thus provide a fertile ground for students' training, K-12 outreach and curriculum development.
* 技术摘要 * 该奖项支持一项实验研究计划,通过超快光学光谱学来了解预先设计的零维胶体量子结构中新兴的光物质自旋过程。该研究计划将直接涉及研究生培训所需的工具和技术,以解决一些基本问题:控制共振等离子体激子相互作用;实现超快自旋控制和回声胶体量子结构的自旋等离子体和自旋声子相互作用;和一类新的胶体量子磁半导体器件的发展。该项目的完成将促进我们对纳米尺度下光辅助自旋相关现象的基本理解和材料工程。这项工作也很重要,因为零维量子结构代表了可用于基于自旋自由度的量子信息处理的最小维度单元。除了学生培训外,该奖项还将允许将尖端研究活动与本科教育计划,K-12推广,课堂演示和教师培训相结合。非技术摘要 * 该奖项支持实验研究,以了解和控制与纳米尺度电子自旋相关的各种基本相互作用。自旋是电子固有的量子力学性质,可能导致新技术和器件的发展。时间分辨光谱学,可以提供极高的时间分辨率与超短光脉冲将被应用于发射,探测和操纵纳米自旋相关的过程。这将包括应用超短光脉冲来创建半导体自旋与等离子体激元(即金属纳米结构中电子的集体运动)和声子(即固体中原子晶格的集体运动)的耦合,以在非常快的时间尺度上操纵半导体量子结构的自旋,并发现纳米级磁体和半导体自旋之间的新型相互作用。该项目将通过采用多学科实验工具来完成,包括量子结构的化学合成、超快光谱学和纳米器件工程,从而为学生培训、K-12外展和课程开发提供沃土。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Min Ouyang其他文献
Vulnerability effects of passengers' intermodal transfer distance preference and subway expansion on complementary urban public transportation systems
乘客多式联运换乘距离偏好及地铁扩建对城市公共交通互补系统的脆弱性影响
- DOI:
10.1016/j.ress.2016.10.001 - 发表时间:
2017-02 - 期刊:
- 影响因子:8.1
- 作者:
Yongze Yan;Min Ouyang;Hui Tian;Xiaozheng He - 通讯作者:
Xiaozheng He
TASEH: A haloscope axion search experiment
TASEH:光环轴子搜索实验
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hsin Chang;Jing;Yi Chang;Yu;Yuan;Chien;Ching;Kuan;Yung;W. Chiang;Wei;Hien Thi Doan;W. Hung;W. Kuo;Shou;Han Liu;Min Ouyang;Ping;Shin - 通讯作者:
Shin
Coupled Urban Risks: A Complex Systems Perspective with a People-Centric Focus
城市风险耦合:以以人为本为重点的复杂系统视角
- DOI:
10.1016/j.eng.2024.12.023 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:11.600
- 作者:
Min Ouyang;Zekai Cheng;Jiaxin Ma;Hongwei Wang;Stergios Aristoteles Mitoulis - 通讯作者:
Stergios Aristoteles Mitoulis
ATCN-BiGRU: A hybrid deep learning framework based temporal convolutional network and stacked bidirectional gate recurrent units for traffic flow prediction in urban scenarios
ATCN-BiGRU:一种基于时间卷积网络和堆叠双向门控循环单元的混合深度学习框架,用于城市场景中的交通流量预测
- DOI:
10.1016/j.engappai.2025.111473 - 发表时间:
2025-10-22 - 期刊:
- 影响因子:8.000
- 作者:
Liyue Fu;Tong Wang;Min Ouyang;Ling Zhao;Xiaofeng Yin - 通讯作者:
Xiaofeng Yin
The power load’s signal analysis and short-term prediction based on wavelet decomposition
基于小波分解的电力负荷信号分析与短期预测
- DOI:
10.1007/s10586-017-1316-3 - 发表时间:
2017-11 - 期刊:
- 影响因子:0
- 作者:
Huan Wang;Min Ouyang;Zhibing Wang;Ruishi Liang;Xin Zhou - 通讯作者:
Xin Zhou
Min Ouyang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Min Ouyang', 18)}}的其他基金
Engineering Phonons in Hybrid Nanostructures by Design and Understanding Their Roles in A Few Physical Processes
通过设计和了解声子在一些物理过程中的作用来工程混合纳米结构中的声子
- 批准号:
1608720 - 财政年份:2016
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
CAREER: Spin and Spin Coherence Dynamics in One- Dimensional Semiconductor Nanostructures
职业:一维半导体纳米结构中的自旋和自旋相干动力学
- 批准号:
0547194 - 财政年份:2006
- 资助金额:
$ 39万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Inverse Task Planning from Few-Shot Vision Language Demonstrations
协作研究:基于少镜头视觉语言演示的逆向任务规划
- 批准号:
2327974 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: Inverse Task Planning from Few-Shot Vision Language Demonstrations
协作研究:基于少镜头视觉语言演示的逆向任务规划
- 批准号:
2327973 - 财政年份:2024
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313131 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
From a jack-of-all-trades arise masters of few: uncovering the evolutionary patterns and processes driving multigene family functional diversification
从多才多艺的人中脱颖而出:揭示驱动多基因家族功能多样化的进化模式和过程
- 批准号:
2325341 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
III: SMALL: Graph Contrastive Learning for Few-Shot Node Classification
III:SMALL:少样本节点分类的图对比学习
- 批准号:
2229461 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Development of solid-liquid interface total-reflection x-ray spectroscopy with the sensitivity of a few nm and its application to track reactions at solid-liquid interfaces in a real-time manner
几纳米灵敏度固液界面全反射X射线光谱仪的研制及其在实时跟踪固液界面反应中的应用
- 批准号:
23K11710 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ERI: Study of quantum entanglement and spatially different photon pair generation through intermodal four-wave mixing in few-mode and multimode fibers
ERI:通过少模和多模光纤中的模间四波混频研究量子纠缠和空间不同的光子对生成
- 批准号:
2301870 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant
Intense few-cycle mid-infrared laser source
强少周期中红外激光源
- 批准号:
513340870 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Major Research Instrumentation
A few-body perspective on polaron physics and polaron interactions
极化子物理和极化子相互作用的少体视角
- 批准号:
FT230100229 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
ARC Future Fellowships
Collaborative Research: RI: Small: Foundations of Few-Round Active Learning
协作研究:RI:小型:少轮主动学习的基础
- 批准号:
2313130 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Standard Grant