The local and global structure of variational solutions
变分解的局部和全局结构
基本信息
- 批准号:1308420
- 负责人:
- 金额:$ 11.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The projects in this proposal address classical questions in geometric analysis related to the existence, structure, and compactness of solutions to particular variational problems. In a previous work with N. Kapouleas, the PI developed a gluing construction to produce new examples of embedded constant mean curvature surfaces with finite topology in Euclidean three space. The PI expects that appropriate modifications to the linear problem will allow her to extend their techniques to produce infinitely many new embedded, constant mean curvature hypersurfaces. As a second project, the PI will consider compactness theory for extrinsic biharmonic maps. For sequences of harmonic maps, energy quantization and regularity theory play a key role in establishing the compactness result. The PI intends to show, using comparable results for the biharmonic setting, that the limiting biharmonic map and the maps arising from dilations at concentration points are connected in the image manifold without necks. Finally, the PI will attempt to combine and extend her study of the structure of complete, embedded minimal surfaces with finite topology and the structure of annular minimal surfaces with boundary to understand the structure of complete minimal surfaces with infinite topology. Solutions to variational problems are critical points for an energy functional and as such are deeply connected with physical phenomenon. As a particular example, minimal surfaces are critical points for area and on sufficiently small scales are area minimizers, with soap films occurring as natural models. The objects and questions considered in this project can be studied through the lens of partial differential equations, analysis, calculus of variations, and submanifold geometry and are of interest to pure and applied mathematicians as well as many physicists.
在这个建议中的项目解决了几何分析中的经典问题,这些问题与特定变分问题的解的存在性、结构和紧致性有关。在以前的工作与N。Kapouleas,PI开发了一种胶合构造,以产生在欧几里得三空间中具有有限拓扑的嵌入常平均曲率曲面的新示例。PI希望对线性问题进行适当的修改,使她能够扩展他们的技术,以产生无限多个新的嵌入式,常平均曲率超曲面。作为第二个项目,PI将考虑非本征双调和映射的紧性理论。对于调和映射序列,能量量子化和正则性理论在建立紧性结果中起着关键作用。PI打算表明,使用双调和设置的可比结果,限制双调和映射和集中点处的膨胀所产生的映射在图像流形中连接,没有颈部。最后,PI将尝试联合收割机和扩展她的研究结构的完整,嵌入极小曲面与有限拓扑和结构的环形极小曲面的边界,以了解结构的完整极小曲面与无限拓扑。变分问题的解是能量泛函的临界点,因此与物理现象密切相关。作为一个特定的例子,最小表面是面积的关键点,并且在足够小的尺度上是面积最小化器,肥皂膜作为自然模型出现。在这个项目中考虑的对象和问题可以通过偏微分方程、分析、变分法和子流形几何的透镜来研究,并且对纯数学家和应用数学家以及许多物理学家都有兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christine Breiner其他文献
A variational characterization of the catenoid
悬链线的变分表征
- DOI:
10.1007/s00526-012-0579-z - 发表时间:
2010 - 期刊:
- 影响因子:2.1
- 作者:
J. Bernstein;Christine Breiner - 通讯作者:
Christine Breiner
Federal Reserve Bank of New York Staff Reports Inflation Risk and the Cross Section of Stock Returns Inflation Risk and the Cross Section of Stock Returns
纽约联邦储备银行工作人员报告通胀风险和股票收益横截面 通胀风险和股票收益横截面
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Fernando M. Duarte;Hengjie Ai;Christine Breiner;D. Cesarini;Hui Chen;Maya Eden;Xavier Gabaix;Jonathan Goldberg;Jennifer La 'o;Guido Lorenzoni;Gustavo Manso;M. Mestieri;Matt Notowididgo;Sahar Parsa;Michael Powell;Jenny Simon;Alp Simsek;Ivo Welch - 通讯作者:
Ivo Welch
Helicoid-like minimal disks and uniqueness
类螺旋最小圆盘及其独特性
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
J. Bernstein;Christine Breiner - 通讯作者:
Christine Breiner
Distortions of the helicoid
- DOI:
10.1007/s10711-008-9290-9 - 发表时间:
2008-09-24 - 期刊:
- 影响因子:0.500
- 作者:
Jacob Bernstein;Christine Breiner - 通讯作者:
Christine Breiner
Conservation Laws and Gluing Constructions for Constant Mean Curvature (Hyper)Surfaces
恒定平均曲率(超)表面的守恒定律和粘合结构
- DOI:
10.1090/noti2473 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Christine Breiner;Nicolaos Kapouleas;S. Kleene - 通讯作者:
S. Kleene
Christine Breiner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christine Breiner', 18)}}的其他基金
CAREER: Existence and Regularity of Solutions to Variational Problems in Geometric Analysis
职业:几何分析中变分问题解的存在性和规律性
- 批准号:
2147439 - 财政年份:2021
- 资助金额:
$ 11.67万 - 项目类别:
Continuing Grant
CAREER: Existence and Regularity of Solutions to Variational Problems in Geometric Analysis
职业:几何分析中变分问题解的存在性和规律性
- 批准号:
1750254 - 财政年份:2018
- 资助金额:
$ 11.67万 - 项目类别:
Continuing Grant
Existence and Regularity for Variational Problems
变分问题的存在性和正则性
- 批准号:
1609198 - 财政年份:2016
- 资助金额:
$ 11.67万 - 项目类别:
Standard Grant
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
中大尺度原子、分子团簇电子和几何结构的理论研究
- 批准号:21073196
- 批准年份:2010
- 资助金额:36.0 万元
- 项目类别:面上项目
核子自旋结构与高能反应过程的自旋不对称
- 批准号:10975092
- 批准年份:2009
- 资助金额:40.0 万元
- 项目类别:面上项目
非线性抛物双曲耦合方程组及其吸引子
- 批准号:10571024
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:面上项目
磁层亚暴触发过程的全球(global)MHD-Hall数值模拟
- 批准号:40536030
- 批准年份:2005
- 资助金额:120.0 万元
- 项目类别:重点项目
相似海外基金
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2021
- 资助金额:
$ 11.67万 - 项目类别:
Discovery Grants Program - Individual
Graphs and their structure: the interplay between local and global properties of graphs
图及其结构:图的局部属性和全局属性之间的相互作用
- 批准号:
RGPIN-2016-05237 - 财政年份:2020
- 资助金额:
$ 11.67万 - 项目类别:
Discovery Grants Program - Individual
Local and global consequences of hyperphosphorylated tau in the locus coeruleus in Alzheimer's Disease
阿尔茨海默病蓝斑中过度磷酸化 tau 蛋白的局部和整体后果
- 批准号:
10457464 - 财政年份:2020
- 资助金额:
$ 11.67万 - 项目类别:
Relationships between local and global mechanisms of sleep apnea, Alzheimer's disease biomarkers, and memory impairment in cognitively asymptomatic older adults
无认知症状老年人睡眠呼吸暂停、阿尔茨海默病生物标志物和记忆障碍的局部和整体机制之间的关系
- 批准号:
10625981 - 财政年份:2020
- 资助金额:
$ 11.67万 - 项目类别:
Relationships between local and global mechanisms of sleep apnea, Alzheimer's disease biomarkers, and memory impairment in cognitively asymptomatic older adults
无认知症状老年人睡眠呼吸暂停、阿尔茨海默病生物标志物和记忆障碍的局部和整体机制之间的关系
- 批准号:
10388218 - 财政年份:2020
- 资助金额:
$ 11.67万 - 项目类别:
Relationships between local and global mechanisms of sleep apnea, Alzheimer's disease biomarkers, and memory impairment in cognitively asymptomatic older adults
无认知症状老年人睡眠呼吸暂停、阿尔茨海默病生物标志物和记忆障碍的局部和整体机制之间的关系
- 批准号:
10224774 - 财政年份:2020
- 资助金额:
$ 11.67万 - 项目类别:
Local and global consequences of hyperphosphorylated tau in the locus coeruleus in Alzheimer's Disease
阿尔茨海默病蓝斑中过度磷酸化 tau 蛋白的局部和整体后果
- 批准号:
10295033 - 财政年份:2020
- 资助金额:
$ 11.67万 - 项目类别:
Optimizing functional synergies between local and systemic memory CD4 T cell responses to influenza
优化局部和全身记忆 CD4 T 细胞对流感反应之间的功能协同作用
- 批准号:
10317117 - 财政年份:2020
- 资助金额:
$ 11.67万 - 项目类别:
Relationships between local and global mechanisms of sleep apnea, Alzheimer's disease biomarkers, and memory impairment in cognitively asymptomatic older adults
无认知症状老年人睡眠呼吸暂停、阿尔茨海默病生物标志物和记忆障碍的局部和整体机制之间的关系
- 批准号:
10040046 - 财政年份:2020
- 资助金额:
$ 11.67万 - 项目类别:
A sequenced-strategy for improving outcomes in patients with knee osteoarthritis pain
改善膝骨关节炎疼痛患者预后的序贯策略
- 批准号:
10352674 - 财政年份:2019
- 资助金额:
$ 11.67万 - 项目类别: