Applications of the Convergence of Riemannian Manifolds to General Relativity
黎曼流形收敛性在广义相对论中的应用
基本信息
- 批准号:1309360
- 负责人:
- 金额:$ 11.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1309360, Principal Investigator: Christina A. SormaniThe PI will apply Intrinsic Flat convergence between Riemannian manifolds to better understand how close space-like manifolds studied in Mathematical General Relativity approximate the standard well known models. The Intrinsic Flat distance, first introduced by the PI with Stefan Wenger using methods of Ambrosio-Kirchheim, is particularly well-suited to some questions arising in General Relativity because increasingly thin gravity wells disappear under this convergence. In joint work with Dan Lee, the PI has shown that spherically symmetric Riemannian manifolds with increasingly small ADM mass converge to Euclidean space in the pointed intrinsic flat sense, and here proposes to generalize this result. In addition, the PI proposes to develop two new notions of convergence: the first will allow mathematicians to study Lorentzian manifolds directly, and the second will prevent regions from disappearing due to orientation and cancellation. Both notions are specifically adapted to questions arising in General Relativity.Einstein's Theory of General Relativity describes how space is curved by gravity. Even within our own solar system, when computing the trajectories of spacecraft heading to Mars, engineers must take into account the curvature caused by the mass of the planets and the sun. Each planet forms a gravity well. If the mass of a planet is small, one would like to know in what sense the space around it is almost flat. In fact, the space around a planet of arbitrarily small mass could be very highly curved (and have a very deep but thin gravity well). In joint work with Dr. Stefan Wenger, the PI has developed a new means of measuring the closeness between curved spaces and, in joint work with Dr. Dan Lee, she has estimated how close the space around a single perfectly spherical planet is to Euclidean space. In this project, she will develop tools allowing one to better understand the space around groups of planets which are not perfect spheres: like the ones in our own solar system.
摘要奖:DMS 1309360,主要研究者:Christina A. SormaniThe PI将应用黎曼流形之间的内在平坦收敛,以更好地理解数学广义相对论中研究的类空流形如何接近标准的众所周知的模型。 本征平坦距离,首先由PI与Stefan Wenger使用Ambrosio-Kirchheim的方法引入,特别适合于广义相对论中出现的一些问题,因为越来越薄的重力威尔斯在这种收敛下消失了。 在与Dan Lee的联合工作中,PI证明了ADM质量越来越小的球对称黎曼流形在指向的内在平坦意义上收敛到欧几里得空间,并在这里提出推广这一结果。 此外,PI还提出了两个新的收敛概念:第一个将允许数学家直接研究洛伦兹流形,第二个将防止区域由于方向和取消而消失。 这两个概念都特别适用于广义相对论中出现的问题。爱因斯坦的广义相对论描述了空间如何被引力弯曲。 即使在我们自己的太阳系中,当计算前往火星的航天器的轨迹时,工程师也必须考虑行星和太阳质量造成的曲率。每颗行星都形成一个重力井。 如果一颗行星的质量很小,人们想知道在什么意义上它周围的空间几乎是平的。 事实上,一颗质量任意小的行星周围的空间可能是非常弯曲的(并且有一个非常深但很薄的重力井)。 在与Stefan Wenger博士的合作中,PI开发了一种测量弯曲空间之间接近程度的新方法,并且在与Dan Lee博士的合作中,她估计了一个完美球形行星周围的空间与欧几里得空间的接近程度。 在这个项目中,她将开发工具,使人们能够更好地了解行星群周围的空间,这些行星不是完美的球体:就像我们太阳系中的行星一样。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christina Sormani其他文献
Intrinsic flat convergence of covering spaces
- DOI:
10.1007/s10711-016-0158-0 - 发表时间:
2016-04-09 - 期刊:
- 影响因子:0.500
- 作者:
Zahra Sinaei;Christina Sormani - 通讯作者:
Christina Sormani
Near-Equality of the Penrose Inequality for Rotationally Symmetric Riemannian Manifolds
- DOI:
10.1007/s00023-012-0172-1 - 发表时间:
2012-03-21 - 期刊:
- 影响因子:1.300
- 作者:
Dan A. Lee;Christina Sormani - 通讯作者:
Christina Sormani
Correction to: Bartnik’s Mass and Hamilton’s Modified Ricci Flow
- DOI:
10.1007/s00023-020-00902-8 - 发表时间:
2020-03-06 - 期刊:
- 影响因子:1.300
- 作者:
Chen-Yun Lin;Christina Sormani - 通讯作者:
Christina Sormani
Christina Sormani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christina Sormani', 18)}}的其他基金
Geometric Compactness Theorems with Applications to General Relativity
几何紧性定理及其在广义相对论中的应用
- 批准号:
1612049 - 财政年份:2016
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
The Topology of Open Manifolds with Nonnegative Ricci Curvature
具有非负Ricci曲率的开流形拓扑
- 批准号:
0102279 - 财政年份:2001
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
相似海外基金
NSF Convergence Accelerator Track L: HEADLINE - HEAlth Diagnostic eLectronIc NosE
NSF 融合加速器轨道 L:标题 - 健康诊断电子 NosE
- 批准号:
2343806 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
- 批准号:
2344109 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator track L: Translating insect olfaction principles into practical and robust chemical sensing platforms
NSF 融合加速器轨道 L:将昆虫嗅觉原理转化为实用且强大的化学传感平台
- 批准号:
2344284 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: Unraveling the Benefits, Costs, and Equity of Tree Coverage in Desert Cities
NSF 融合加速器轨道 K:揭示沙漠城市树木覆盖的效益、成本和公平性
- 批准号:
2344472 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
- 批准号:
2303525 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
- 批准号:
2344256 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track K: COMPASS: Comprehensive Prediction, Assessment, and Equitable Solutions for Storm-Induced Contamination of Freshwater Systems
NSF 融合加速器轨道 K:COMPASS:风暴引起的淡水系统污染的综合预测、评估和公平解决方案
- 批准号:
2344357 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant
NSF Convergence Accelerator (L): Innovative approach to monitor methane emissions from livestock using an advanced gravimetric microsensor.
NSF Convergence Accelerator (L):使用先进的重力微传感器监测牲畜甲烷排放的创新方法。
- 批准号:
2344426 - 财政年份:2024
- 资助金额:
$ 11.6万 - 项目类别:
Standard Grant