Tensor Regressions and Applications in Neuroimaging Data Analysis
张量回归及其在神经影像数据分析中的应用
基本信息
- 批准号:1310319
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rapidly advancing medical imaging technologies are producing massive amounts of complex imaging data, and are imposing unprecedented demands for new statistical methodology. The investigators aim to integrate advanced statistical modeling with modern computational techniques to address some most challenging questions arising from medical imaging analysis. The investigators propose a novel statistical framework and develop accompanying theory and algorithms for tensor regression, i.e., regression with image covariates that are in the form of multidimensional arrays / tensors. They study a variety of regularization schemes in the context of tensor regression to stabilize estimation, improve risk property, and reconstruct sparse signals. They also develop methodology within the tensor regression framework for scientific applications including brain region and connectivity pattern identification, imaging based disease diagnosis, and multiple imaging modalities analysis. The project offers a systematic solution to a family of imaging data problems, and also provides a new class of statistical regression methods.One of the most intriguing questions in modern science is to understand human brains, both those of general population and those with neuropsychiatric and neurodegenerative disorders. Advanced medical imaging technologies provide powerful tools to help address the question, producing imaging data of unprecedented size and complexity. The investigators aim to develop a host of novel statistical methods, theories, and highly scalable algorithms for the analysis of massive medical imaging data. The proposed research is expected to make significant contributions on two fronts: timely response to the growing needs and challenges of neuroimaging data analysis, and development of an utterly new and broad statistical framework and the associated methodology that contributes to the advance of the statistical discipline.
快速发展的医学成像技术正在产生大量复杂的成像数据,并对新的统计方法提出了前所未有的要求。研究人员的目标是将先进的统计建模与现代计算技术相结合,以解决医学成像分析中一些最具挑战性的问题。研究人员提出了一个新的统计框架,并为张量回归开发了相应的理论和算法,即,使用多维数组/张量形式的图像协变量进行回归。他们在张量回归的背景下研究了各种正则化方案,以稳定估计,改善风险属性,并重建稀疏信号。他们还在张量回归框架内开发科学应用的方法,包括大脑区域和连接模式识别,基于成像的疾病诊断和多种成像模式分析。该项目为一系列成像数据问题提供了系统的解决方案,也提供了一类新的统计回归方法。现代科学中最有趣的问题之一是了解人类的大脑,包括普通人群和那些患有神经精神和神经退行性疾病的人。先进的医学成像技术提供了强大的工具来帮助解决这个问题,产生前所未有的规模和复杂性的成像数据。研究人员的目标是开发一系列新的统计方法,理论和高度可扩展的算法,用于分析大量医学成像数据。拟议的研究预计将在两个方面做出重大贡献:及时响应神经影像数据分析日益增长的需求和挑战,以及开发一个全新的广泛的统计框架和相关方法,有助于统计学科的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hua Zhou其他文献
Exogenous infusion of short-chain fatty acids can improve intestinal functions independently of the gut microbiota
外源性输注短链脂肪酸可以独立于肠道微生物群改善肠道功能
- DOI:
10.1093/jas/skaa371 - 发表时间:
2020 - 期刊:
- 影响因子:3.3
- 作者:
Hua Zhou;Jing Sun;Liangpeng Ge;Zuohua Liu;Hong Chen;Bing Yu;Daiwen Chen - 通讯作者:
Daiwen Chen
Novel Water Harvesting Fibrous Membranes with Directional Water Transport Capability
具有定向输水能力的新型集水纤维膜
- DOI:
10.1002/admi.201801529 - 发表时间:
2019-01 - 期刊:
- 影响因子:5.4
- 作者:
Jing Wu;Hua Zhou;Hongxia Wang;Tong Lin;et al. - 通讯作者:
et al.
Macrophage Inhibitor, Semapimod, Reduces Tumor Necrosis Factor-Alpha in Myocardium in a Rat Model of Ischemic Heart Failure
巨噬细胞抑制剂 Semapimod 可减少缺血性心力衰竭大鼠模型心肌中的肿瘤坏死因子-α
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:3
- 作者:
A. Kherani;Garrett W Moss;Hua Zhou;A. Gu;Ge Zhang;Allison R. Schulman;Jennifer M. Fal;Robert Sorabella;T. Plasse;Liu Rui;S. Homma;D. Burkhoff;M. Oz;Jie Wang - 通讯作者:
Jie Wang
Cognitive Factors of Weight Management During Pregnancy Among Chinese Women: A Study Applying Protective Motivation Theory
中国女性孕期体重管理的认知因素:应用保护动机理论的研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:2.7
- 作者:
Xueqing Peng;Nichao Yang;Chi Zhang;A. N. Walker;Yingying Shen;Hua Jiang;Sen Li;H. You;Hua Zhou;Li Wang - 通讯作者:
Li Wang
Computer-based algorithm modeling protein metabolism in aortic regurgitation for positron emission tomography
基于计算机的正电子发射断层扫描算法对主动脉瓣反流中的蛋白质代谢进行建模
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
E. Herrold;S. M. Goldfine;Hua Zhou;A. Cooper;S. Nakayama;P. Zanzonico;N. Magid;J. Borer - 通讯作者:
J. Borer
Hua Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hua Zhou', 18)}}的其他基金
SCH: Statistical Foundation and Predictive Modeling for Personalized Diabetes Management: Continuous Glucose Monitoring (CGM), Electronic Health Records (EHR), and Biobanks
SCH:个性化糖尿病管理的统计基础和预测模型:连续血糖监测 (CGM)、电子健康记录 (EHR) 和生物样本库
- 批准号:
2205441 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
DMS/NIGMS 2: Statistical Methods and Computational Algorithms for Biobank Data
DMS/NIGMS 2:生物样本库数据的统计方法和计算算法
- 批准号:
2054253 - 财政年份:2021
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Tensor Regressions and Applications in Neuroimaging Data Analysis
张量回归及其在神经影像数据分析中的应用
- 批准号:
1645093 - 财政年份:2015
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Precise Mathematical Modeling and Experimental Validation of Radiation Heat Transfer in Complex Porous Media Using Analytical Renewal Theory Abstraction-Regressions
职业:使用分析更新理论抽象回归对复杂多孔介质中的辐射传热进行精确的数学建模和实验验证
- 批准号:
2339032 - 财政年份:2024
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
From Covariance Regressions to Nonparametric Dynamic Causal Modelling (CoreDCM)
从协方差回归到非参数动态因果建模 (CoreDCM)
- 批准号:
EP/X038297/1 - 财政年份:2023
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Collaborative Research: Use of Random Compression Matrices For Scalable Inference in High Dimensional Structured Regressions
合作研究:使用随机压缩矩阵进行高维结构化回归中的可扩展推理
- 批准号:
2210672 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Collaborative Research: Use of Random Compression Matrices For Scalable Inference in High Dimensional Structured Regressions
合作研究:使用随机压缩矩阵进行高维结构化回归中的可扩展推理
- 批准号:
2210206 - 财政年份:2022
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
RII Track-4: Adaptive Fault Detection and Diagnosis Based on Growing Gaussian Mixture Regressions for High-Performance HVAC Systems
RII Track-4:高性能 HVAC 系统基于增长高斯混合回归的自适应故障检测和诊断
- 批准号:
1929209 - 财政年份:2020
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2019
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Investigating Structural Change in Predictive Regressions with Applications to Forecasting Stock Returns
研究预测回归的结构变化及其在预测股票回报中的应用
- 批准号:
ES/R00496X/1 - 财政年份:2018
- 资助金额:
$ 12万 - 项目类别:
Research Grant
Statistical inference in finite mixture of regressions and mixture-of-experts models in high-dimensional spaces, and varying coefficient finite mixture of regression models
高维空间中回归和专家混合模型的有限混合的统计推断,以及回归模型的变系数有限混合
- 批准号:
RGPIN-2015-03805 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Discovery Grants Program - Individual
Study on peak-time regressions of body temperature and neuromuscular function in circadian variation
昼夜变化中体温和神经肌肉功能的峰值时间回归研究
- 批准号:
17K01623 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)