Quasi-linear hyperbolic and surface waves

准线性双曲波和表面波

基本信息

  • 批准号:
    1312342
  • 负责人:
  • 金额:
    $ 26.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

This project addresses the mathematical modeling and analysis of nonlinear wave propagation in a variety of physical systems. It focuses on nondispersive waves, especially surface waves that propagate on interfaces such as discontinuities in vorticity, vortex sheets, material boundaries, water waves, and shock waves. Many of the wave motions considered in the proposal have constant, nonzero frequency in the linearized limit. These waves form a comparatively little studied class of nondispersive waves, and the proposed research aims to develop an understanding of their nonlinear dynamics, which is qualitatively different from that of dispersive waves or nondispersive hyperbolic waves. The proposed research will derive and study asymptotic descriptions of these waves and will also develop normal form transformations for quasi-linear wave equations. Hamiltonian dynamics provides unifying framework for most of the nonlinear wave motions to be studied in the proposed research. For small-amplitude waves, this description is more easily carried out in spectral form, which is particularly appropriate for the surface waves considered in the proposed research because of the spatial nonlocality of their interactions. The issue of understanding the relationship between the spectral and spatial descriptions of the resulting nonlinear dynamics is a fundamental one and one that is relevant to many other problems. A further topic of the proposed research is a study of the glancing Mach reflection of shock waves. Shock reflection is one of the most important multi-dimensional problems for hyperbolic conservation laws, leading to remarkably interesting and complex phenomena.These results should also shed light on related problems in transonic aerodynamics.Surface waves are waves that propagate along a boundary or interface. The most familiar example consists of the water waves on the surface of a body of water, like an ocean. Another type of surface wave consists of the Rayleigh waves on a solid interface. These waves are generated by earthquakes, and they are also used in technological applications, such as ultrasonic surface acoustic wave devices in cell phones. A further example consists of the electromagnetic surface waves, or surface plasmons, on the interface between a metal and an insulator, which find applications in photonics. Small-amplitude waves are well-described by linear equations, but at larger amplitudes nonlinear effects become important. These effects lead to qualitatively new phenomena such as wave-breaking, the formation of shock waves or other singularities, and the generation of new waves by nonlinear wave-interactions. Nonlinearity, and the possibility of a free surface that moves with the wave, makes the mathematical analysis of these problems very challenging. An additional feature of surface waves is that the effects of nonlinearity may be nonlocal because what happens at one point on the surface can influence what happens elsewhere on the surface through the bulk medium. The principal investigator plans to study the fundamental qualitative properties of such surface waves in the context of a wide variety of physical problems. The results will have potential applications in fluid dynamics, transonic flow, elasticity, magnetohydrodynamics, geophysics, and condensed matter physics.
该项目致力于对各种物理系统中的非线性波传播进行数学建模和分析。它侧重于非色散波,特别是在界面上传播的表面波,如涡度、涡片、材料边界、水波和激波中的不连续性。建议中考虑的许多波动在线性化极限中具有恒定的、非零的频率。这些波形成了一类研究相对较少的非色散波,所提出的研究目的是加深对其非线性动力学的理解,这与色散波或非色散双曲波有质的不同。拟议的研究将推导和研究这些波的渐近描述,并将发展准线性波动方程的规范型变换。哈密顿动力学为拟研究的大多数非线性波动问题提供了统一的框架。对于小幅度波,这种描述更容易以频谱形式进行,这特别适合于拟议研究中考虑的表面波,因为它们相互作用的空间非定域性。理解由此产生的非线性动力学的频谱和空间描述之间的关系是一个基本的问题,也是一个与许多其他问题相关的问题。这项研究的另一个主题是激波掠过马赫反射的研究。激波反射是双曲型守恒律中最重要的多维问题之一,导致了非常有趣和复杂的现象。这些结果也应该有助于揭示跨音速空气动力学中的相关问题。表面波是沿着边界或界面传播的波。最常见的例子是水面上的水波,就像海洋一样。另一种面波由固体界面上的瑞利波组成。这些波是由地震产生的,它们也被用于技术应用,例如手机中的超声波表面声波设备。另一个例子是金属和绝缘体之间界面上的电磁表面波,或表面等离子激元,它在光子学中有应用。小幅度波可以用线性方程很好地描述,但在较大幅度时,非线性效应变得重要。这些效应导致了质的新现象,如波破裂、激波或其他奇点的形成,以及通过非线性波相互作用产生新的波。非线性,以及自由表面随波移动的可能性,使得对这些问题的数学分析非常具有挑战性。面波的另一个特征是,非线性的影响可能是非局部的,因为表面上某一点发生的事情会通过主体介质影响到表面上其他地方发生的事情。首席研究员计划在各种物理问题的背景下研究这种表面波的基本性质。这些结果将在流体动力学、跨音速流动、弹性力学、磁流体力学、地球物理和凝聚态物理中有潜在的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Hunter其他文献

matplotlib/matplotlib: REL: v3.4.0rc1
matplotlib/matplotlib:相对:v3.4.0rc1
  • DOI:
    10.5281/zenodo.4550144
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas A Caswell;Michael Droettboom;Antony Lee;Elliott Sales de Andrade;John Hunter;Tim Hoffmann;Eric Firing;Jody Klymak;David Stansby;Nelle Varoquaux;Jens Hedegaard Nielsen;Benjamin Root;Ryan May;Phil Elson;Jouni K. Seppänen;Darren Dale;Jae;Damon McDougall;Andrew D. Straw;Paul Hobson;Christoph Gohlke;Tony S Yu;Eric Ma;Adrien F. Vincent;Hannah;Steven Silvester;Charlie Moad;Nikita Kniazev;Elan Ernest;P. Ivanov
  • 通讯作者:
    P. Ivanov
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016): late breaking abstracts
  • DOI:
    10.1186/s40425-016-0191-4
  • 发表时间:
    2016-12-01
  • 期刊:
  • 影响因子:
    10.600
  • 作者:
    Sonja Althammer;Keith Steele;Marlon Rebelatto;Tze Heng Tan;Tobias Wiestler;Guenter Schmidt;Brandon Higgs;Xia Li;Li Shi;Xiaoping Jin;Joyce Antal;Ashok Gupta;Koustubh Ranade;Gerd Binning;Joaquim Bellmunt;Ronald de Wit;David J. Vaughn;Yves Fradet;Jae Lyun Lee;Lawrence Fong;Nicholas J. Vogelzang;Miguel A. Climent;Daniel P. Petrylak;Toni K. Choueiri;Andrea Necchi;Winald Gerritsen;Howard Gurney;David I. Quinn;Stéphane Culine;Cora N. Sternberg;Yabing Mai;Markus Puhlmann;Rodolfo F. Perini;Dean F. Bajorin;Padmanee Sharma;Margaret K. Callahan;Emiliano Calvo;Joseph W. Kim;Filipo de Braud;Patrick A. Ott;Petri Bono;Rathi N. Pillai;Michael Morse;Dung T. Le;Matthew Taylor;Pavlina Spilliopoulou;Johanna Bendell;Dirk Jaeger;Emily Chan;Scott J. Antonia;Paolo A. Ascierto;Delphine Hennicken;Marina Tschaika;Alex Azrilevich;Jonathan Rosenberg;Ofer Levy;Christopher Chan;Gady Cojocaru;Spencer Liang;Eran Ophir;Sudipto Ganguly;Amir Toporik;Maya Kotturi;Tal Fridman Kfir;Benjamin M. Murter;Kathryn Logronio;Liat Dassa;Ling Leung;Shirley Greenwald;Meir Azulay;Sandeep Kumar;Zoya Alteber;Xiaoyu Pan;Arthur Machlenkin;Yair Benita;Andrew W. Drake;Ayelet Chajut;Ran Salomon;Ilan Vankin;Einav Safyon;John Hunter;Zurit Levine;Mark White;Rom Leidner;Hyunseok Kang;Robert Haddad;Neil H. Segal;Lori J. Wirth;Robert L. Ferris;F. Stephen Hodi;Rachel E. Sanborn;Thomas F. Gajewski;William Sharfman;Dan McDonald;Shivani Srivastava;Xuemin Gu;Penny Phillips;Chaitali Passey;Tanguy Seiwert;Tsadik Habtetsion;Gang Zhou;Donastas Sakellariou-Thompson;Cara Haymaker;Caitlin Creasy;Mark Hurd;Naohiro Uraoka;Jaime Rodriguez Canales;Scott Koptez;Patrick Hwu;Anirban Maitra;Chantale Bernatchez;Scott M. Coyle;Kole T. Roybel;Levi J. Rupp;Stephen P. Santoro;Stephanie Secrest;Michael Spelman;Hanson Ho;Tina Gomes;Tiffany Tse;Chia Yung-Wu;Jack Taunton;Wendell Lim;Peter Emtage;Tarsem Moudgil;Carmen Ballesteros-Merino;Traci Hilton;Christopher Paustian;Rom Leidner;David Page;Walter Urba;Bernard Fox;Bryan Bell;Ashish Patel;Tove Olafsen;Daulet Satpayev;Michael Torgov;Filippo Marchioni;Jason Romero;Ziyue Karen Jiang;Charles Zamilpa;Jennifer S. Keppler;Alessandro Mascioni;Fang Jia;Chen-Yu Lee;Jean Gudas;Ryan J. Sullivan;Yujin Hoshida;Theodore Logan;Nikhil Khushalani;Anita Giobbie-Hurder;Kim Margolin;Joanna Roder;Rupal Bhatt;Henry Koon;Thomas Olencki;Thomas Hutson;Brendan Curti;Shauna Blackmon;James W. Mier;Igor Puzanov;Heinrich Roder;John Stewart;Asim Amin;Marc S. Ernstoff;Joseph I. Clark;Michael B. Atkins;Howard L. Kaufman;Jeffrey Sosman;Sabina Signoretti;David F. McDermott;Abraham A. Anderson;Igor Puzanov;Mohammed M. Milhem;Robert H. I. Andtbacka;David Minor;Kevin S. Gorski;Daniel M. Baker;Omid Hamid;Howard L. Kaufman;Emmanuel Akporiaye;Brendan Curti;Yoshinobu Koguchi;Rom Leidner;Kim Sutcliffe;Kristie Conder;Walter Urba;Thomas Marron;Nina Bhardwaj;Linda Hammerich;Fiby George;Seunghee Kim-Schulze;Tibor Keler;Tom Davis;Elizabeth Crowley;Andres Salazar;Joshua Brody;Arta Monjazeb;Megan E. Daly;Jonathan Riess;Tianhong Li;William J. Murphy;Karen Kelly;Zhiwei Hu;Rulong Shen;Amanda Campbell;Elizabeth McMichael;Lianbo Yu;Bhuvaneswari Ramaswam;Cheryl A. London;Tian Xu;William Carson;Kathleen M. Kokolus;Elizabeth A. Repasky;Todd D. Schell;Joseph D. Drabick;David J. Messenheimer;Shawn Jensen;Bernard Fox;Mark Rubinstein;Kristina Andrijauskaite;Marzena Swiderska-syn;Kristin Lind;Agnes Choppin;Marina K. Roell;John Wrangle;Kristina Andrijauskaite;Marzena Swiderska-syn;Peter Rhode;Hing Wong;Mark Rubinstein;Shamim Ahmad;Mason Webb;Rasha Abu-Eid;Rajeev Shrimali;Vivek Verma;Atbin Doroodchi;Zuzana Berrong;David Yashar;Raed Samara;Mikayel Mkrtichyan;Samir Khleif;Steven Powell;Mark Gitau;Christopher Sumey;Andrew Terrell;Michele Lohr;Ryan K. Nowak;Steven McGraw;Ash Jensen;Miran Blanchard;Kathryn A. Gold;Ezra E. W. Cohen;Christie Ellison;Lora Black;John Lee;William Chad Spanos;Erik Wennerberg;Emily Schwitzer;Claire Lhuillier;Graeme Koelwyn;Rebecca Hiner;Lee Jones;Sandra Demaria;Vandeveer Amanda;John W. Greiner;Jeffrey Schlom;Michelle Bookstaver;Christopher M. Jewell;Christopher Paustian;Andrew Gunderson;Brian Boulmay;Rui Li;Bradley Spieler;Kyle Happel;Tarsem Moudgil;Zipei Feng;Carmen Ballesteros-Merino;Christopher Dubay;Brenda Fisher;Yoshinobu Koguchi;Sandra Aung;Eileen Mederos;Carlo B. Bifulco;Michael McNamara;Keith Bahjat;William Redmond;Augusto Ochoa;Hong-Ming Hu;Adi Mehta;Fridtjof Lund-Johansen;Bernard Fox;Walter Urba;Rachel E. Sanborn;Traci Hilton;Frank Bedu-Addo;Greg Conn;Michael King;Panna Dutta;Robert Shepard;Mark Einstein;Sylvia Adams;Ena Wang;Ping Jin;Yelena Novik;Debra Morrison;Ruth Oratz;Franco M. Marincola;David Stroncek;Judith Goldberg;Sandra Demaria;Silvia C. Formenti;Jérôme Galon;Bernhard Mlecnik;Florence Marliot;Fang-Shu Ou;Carlo B. Bifulco;Alessandro Lugli;Inti Zlobec;Tilman T. Rau;Iris D. Nagtegaal;Elisa Vink-Borger;Arndt Hartmann;Carol Geppert;Michael H. Roehrl;Prashant Bavi;Pamela S. Ohashi;Julia Y. Wang;Linh T. Nguyen;SeongJun Han;Heather L. MacGregor;Sara Hafezi-Bakhtiari;Bradley G. Wouters;Yutaka Kawakami;Boryana Papivanova;Mingli Xu;Tomonobu Fujita;Shoichi Hazama;Nobuaki Suzuki;Hiroaki Nagano;Kiyotaka Okuno;Kyogo Itoh;Eva Zavadova;Michal Vocka;Jan Spacek;Lubos Petruzelka;Bohuslav Konopasek;Pavel Dundr;Helena Skalova;Toshihiko Torigoe;Noriyuki Sato;Tomohisa Furuhata;Ichiro Takemasa;Marc Van den Eynde;Anne Jouret-Mourin;Jean-Pascal Machiels;Tessa Fredriksen;Lucie Lafontaine;Bénédicte Buttard;Sarah Church;Pauline Maby;Helen Angell;Mihaela Angelova;Angela Vasaturo;Gabriela Bindea;Anne Berger;Christine Lagorce;Prabhu S. Patel;Hemangini H. Vora;Birva Shah;Jayendrakumar B. Patel;Kruti N. Rajvik;Shashank J. Pandya;Shilin N. Shukla;Yili Wang;Guanjun Zhang;Giuseppe V. Masucci;Emilia K. Andersson;Fabio Grizzi;Luigi Laghi;Gerardo Botti;Fabiana Tatangelo;Paolo Delrio;Gennaro Cilberto;Paolo A. Ascierto;Franco Marincola;Daniel J. Sargent;Bernard A. Fox;Alain Algazi;Katy Tsai;Michael Rosenblum;Prachi Nandoskar;Robert H. I. Andtbacka;Amy Li;John Nonomura;Kathryn Takamura;Mary Dwyer;Erica Browning;Reneta Talia;Chris Twitty;Sharron Gargosky;Jean Campbell;Carmen Ballesteros-Merino;Carlo B. Bifulco;Bernard Fox;Mai Le;Robert H. Pierce;Adil Daud;Robyn Gartrell;Douglas Marks;Edward Stack;Yan Lu;Daisuke Izaki;Kristen Beck;Dan Tong Jia;Paul Armenta;Ashley White-Stern;Yichun Fu;Zoe Blake;Howard L. Kaufman;Bret Taback;Basil Horst;Yvonne M. Saenger;Steven Leonardo;Keith Gorden;Ross B. Fulton;Kathryn Fraser;Takashi O. Kangas;Richard Walsh;Kathleen Ertelt;Jeremy Graff;Mark Uhlik;Jennifer S. Sims;Liang Lei;Takashi Tsujiuchi;Jeffrey N. Bruce;Peter Canoll;Anthony W Tolcher;Evan W Alley;Gurunadh Chichili;Jan E Canoll;Paul Moore;Ezio Bonvini;Syd Johnson;Sadhna Shankar;James Vasselli;Jon Wigginton;John Powderly
  • 通讯作者:
    John Powderly
matplotlib/matplotlib v3.1.3
matplotlib/matplotlib v3.1.3
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas A Caswell;Michael Droettboom;Antony Lee;John Hunter;Eric Firing;David Stansby;J. Klymak;Tim Hoffmann;Elliott Sales de Andrade;Nelle Varoquaux;Jens Hedegaard Nielsen;Benjamin Root;Phil Elson;Ryan May;Darren Dale;Jae;Jouni K. Seppänen;Damon McDougall;Andrew D. Straw;Paul Hobson;Christoph Gohlke;Tony S Yu;Eric Ma;Adrien F. Vincent;Steven Silvester;Charlie Moad;Nikita Kniazev;P. Ivanov;Elan Ernest;Jan Katins
  • 通讯作者:
    Jan Katins
Origin and growth of cysts of the jaws.
颌骨囊肿的起源和生长。
Co-Designing Research for Sustainable Food Systems and Diets with Aboriginal Communities: A Study Protocol
与原住民社区共同设计可持续粮食系统和饮食研究:研究方案

John Hunter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Hunter', 18)}}的其他基金

Nonlinear Waves in Fluids
流体中的非线性波
  • 批准号:
    1908947
  • 财政年份:
    2019
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
Nonlinear Surface Waves
非线性表面波
  • 批准号:
    1616988
  • 财政年份:
    2016
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
DISSERTATION RESEARCH: The Evolution of the Hypocone in Microbats (Microchiroptera)
论文研究:微型蝙蝠(Microchiroptera)下锥体的进化
  • 批准号:
    1401775
  • 财政年份:
    2014
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
Nonlinear hyperbolic waves and interfaces
非线性双曲波和界面
  • 批准号:
    1009538
  • 财政年份:
    2010
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
Nonlinear Hyperbolic Waves
非线性双曲波
  • 批准号:
    0607355
  • 财政年份:
    2006
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Multi-Dimensional Problems for the Euler Equations of Compressible Fluid Flow and Related Problems in Hyperbolic Conservation Laws
FRG:合作研究:可压缩流体流动欧拉方程的多维问题及双曲守恒定律中的相关问题
  • 批准号:
    0243622
  • 财政年份:
    2003
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
Nonlinear Wave Propagation
非线性波传播
  • 批准号:
    0309648
  • 财政年份:
    2003
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
Nonlinear wave propagation
非线性波传播
  • 批准号:
    0072343
  • 财政年份:
    2000
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
Nonlinear Partial Differential Equations in Applied Mathematics
应用数学中的非线性偏微分方程
  • 批准号:
    9704155
  • 财政年份:
    1997
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Hyperbolic Waves
数学科学:非线性双曲波
  • 批准号:
    9404152
  • 财政年份:
    1994
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
全纯Mobius变换及其在相对论和信号分析中的应用
  • 批准号:
    11071230
  • 批准年份:
    2010
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
枢纽港选址及相关问题的算法设计
  • 批准号:
    71001062
  • 批准年份:
    2010
  • 资助金额:
    17.6 万元
  • 项目类别:
    青年科学基金项目
统计过程控制图的设计理论及其应用
  • 批准号:
    10771107
  • 批准年份:
    2007
  • 资助金额:
    22.0 万元
  • 项目类别:
    面上项目
MIMO电磁探测技术与成像方法研究
  • 批准号:
    40774055
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目

相似海外基金

Structure of the solutions to non-linear hyperbolic partial differential equations derived from astrophysics
天体物理学非线性双曲偏微分方程解的结构
  • 批准号:
    18K03371
  • 财政年份:
    2018
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Almost periodic oscillations of linear and nonlinear hyperbolic equations
线性和非线性双曲方程的几乎周期性振荡
  • 批准号:
    18540220
  • 财政年份:
    2006
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Well-posedness and approximation of Cauchy problems for hyperbolic systems
双曲系统柯西问题的适定性和逼近
  • 批准号:
    14540175
  • 财政年份:
    2002
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on the time global solutions for the partial differential equations of Kirchhoff type
基尔霍夫型偏微分方程时间全局解的研究
  • 批准号:
    14540188
  • 财政年份:
    2002
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Properties of solutions of linear and non-linear hyperbolic equations, singular Fourier integral operators, averages over curves
线性和非线性双曲方程解的性质、奇异傅里叶积分算子、曲线平均值
  • 批准号:
    0296036
  • 财政年份:
    2001
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
Properties of solutions of linear and non-linear hyperbolic equations, singular Fourier integral operators, averages over curves
线性和非线性双曲方程解的性质、奇异傅里叶积分算子、曲线平均值
  • 批准号:
    9970330
  • 财政年份:
    1999
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Standard Grant
Applications of Besov spaces and Sobolev spaces to non-linear problems in mathematical physics
Besov 空间和 Sobolev 空间在数学物理非线性问题中的应用
  • 批准号:
    11640184
  • 财政年份:
    1999
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Material Mixing in Space-Time and Dynamic Control in the Coefficients of Linear Hyperbolic Equations
时空物质混合与线性双曲方程系数的动态控制
  • 批准号:
    9803476
  • 财政年份:
    1998
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Continuing Grant
CHARACTERISTIC BOUNDARY VALUE PROBLEM FOR LINEAR AND NONLINEAR SYMMETRIC HYPERBOLIC SYSTEMS
线性和非线性对称双曲线系统的特征边值问题
  • 批准号:
    09440061
  • 财政年份:
    1997
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on global property of holomorphic vector fields
全纯向量场的全局性质研究
  • 批准号:
    06640181
  • 财政年份:
    1994
  • 资助金额:
    $ 26.63万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了