The Mathematics of Pseudocodewords

伪码字的数学

基本信息

  • 批准号:
    1313221
  • 负责人:
  • 金额:
    $ 19.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Smarandache1313221 This project focuses on the analysis of certain vector spaces over finite fields, called low-density parity-check (LDPC) codes, that have a set of sparse vectors generating the dual space. While these codes show great promise in current and future communication systems, their performance has been limited by the existence of so-called pseudocodewords. The main goal of this research is to develop a comprehensive mathematical theory of these objects by combining tools from coding and information theory, linear algebra, combinatorics, and graph theory. It is achieved by an analysis of the codewords corresponding to the cover graphs of the associated code graphs -- called protograph-based codes -- and the pseudocodewords obtained by projecting these codewords onto the code graphs, an analysis of the pseudocodewords in the fundamental cones (with implications in linear programming decoding and iterative decoding), and an analysis of the pseudo-weights (the measure of performance under iterative decoding) with implications in code performance. Despite significant progress in the last decades, the performance of current communication systems is still not satisfactory in many situations, such as when delay is important, power is critical, or bandwidth is constrained. This project studies the reasons why current coding techniques underperform relative to theoretical limits and develops a mathematical theory that explains their shortcomings and helps design better codes. The investigator's joint appointment with the department of electrical engineering and her collaboration with engineering experts from academia and industry ensure that the project has an impact beyond the theoretical realm; the analytical findings are exploited to improve the reliability of current and future communication systems. Because reliable communication is at the heart of ubiquitous access to and exchange of data, the nation's information technology infrastructure benefits from the project. Its impact is, however, not restricted to channel coding, but extends to areas such as computer science, networking, and compressed sensing.
Smarandache 1313221 这个项目的重点是分析有限域上的某些向量空间,称为低密度奇偶校验(LDPC)码,具有一组稀疏向量生成对偶空间。 虽然这些代码在当前和未来的通信系统中显示出很大的希望,但它们的性能受到所谓伪码字的存在的限制。 本研究的主要目标是通过结合编码和信息论,线性代数,组合学和图论的工具来开发这些对象的综合数学理论。 它是通过分析对应于相关代码图的覆盖图的码字-称为基于原型图的代码-和通过将这些码字投影到代码图上获得的伪码字,分析基本锥中的伪码字来实现的。(涉及线性编程解码和迭代解码),以及对伪权重(迭代解码下的性能度量)的分析,其暗示了码性能。 尽管在过去的几十年中取得了重大进展,但当前通信系统的性能在许多情况下仍然不令人满意,例如当延迟很重要时,功率很关键,或者带宽受限时。 该项目研究了当前编码技术相对于理论极限表现不佳的原因,并开发了一种数学理论来解释它们的缺点,并帮助设计更好的代码。 研究人员与电气工程系的联合任命以及她与学术界和工业界的工程专家的合作确保了该项目的影响超出了理论领域;分析结果被用于提高当前和未来通信系统的可靠性。 由于可靠的通信是无处不在的数据访问和交换的核心,国家的信息技术基础设施受益于该项目。 然而,它的影响并不局限于信道编码,而是扩展到计算机科学,网络和压缩传感等领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roxana Smarandache其他文献

Roxana Smarandache的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roxana Smarandache', 18)}}的其他基金

CIF: Medium: Collaborative Research: Spatially Coupled Sparse Codes on Graphs - Theory, Practice, and Extensions
CIF:媒介:协作研究:图上的空间耦合稀疏代码 - 理论、实践和扩展
  • 批准号:
    1252788
  • 财政年份:
    2012
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
CIF: Medium: Collaborative Research: Spatially Coupled Sparse Codes on Graphs - Theory, Practice, and Extensions
CIF:媒介:协作研究:图上的空间耦合稀疏代码 - 理论、实践和扩展
  • 批准号:
    1161762
  • 财政年份:
    2012
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
Collaborative Research: New Directions in Graph-Based Code Design
协作研究:基于图的代码设计的新方向
  • 批准号:
    0830608
  • 财政年份:
    2008
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
Pseudo-Codeword Analysis and Design of Quasi-Cyclic and Convolutional Codes
准循环码和卷积码的伪码字分析与设计
  • 批准号:
    0708033
  • 财政年份:
    2007
  • 资助金额:
    $ 19.53万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了