BSF: 2012251: Algorithmic Game Theory meets Computational Learning Theory

BSF:2012251:算法博弈论与计算学习理论的结合

基本信息

  • 批准号:
    1331175
  • 负责人:
  • 金额:
    $ 3.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-10-01 至 2018-09-30
  • 项目状态:
    已结题

项目摘要

This project is funded as part of the United States-Israel Collaboration in Computer Science (USICCS) program. Through this program, NSF and the United States - Israel Binational Science Foundation (BSF) jointly support collaborations among US-based researchers and Israel-based researchers.The goal of this project is to use ideas and techniques developed in the field of Computational Learning Theory to produce algorithms that can aid users or firms in solving certain economic decision-making problems. Computational Learning Theory studies how one can automatically learn good prediction rules from data, as well as questions such as how much data is intrinsically needed in order to learn rules of a given complexity. In economic decision-making, one often has some amount of data (or recent experience) and must extrapolate from this a course of action for the future. This project aims to bring these two areas together in order to produce improved economic decision-making tools.This project focuses specifically on three challenging problems for which ideas from Computational Learning Theory appear to be especially promising. The first concerns the decision of how many of each of a given suite of products to produce when customers are arriving over time and have disjunctive needs, and the production costs for each product obey economies of scale. The goal in this setting is from a small amount of initial observation to be able to commit to a near-optimal plan for how much of each product to produce, to satisfy future customers at the least possible total cost. The second concerns the problems of market segmentation when the potential customers have known attributes but the relation of these attributes to their preferences is not known up front. Finally, the last concerns the problem of inferring a model for bidders in an auction when only the outcome information of the auction is observable. These problems all involve challenging inference tasks for which tools from Computational Learning Theory appear to be well suited.
该项目是美国-以色列计算机科学合作(USICCS)计划的一部分。通过这个项目,NSF和美国-以色列两国科学基金会(BSF)共同支持美国科学家和以色列科学家之间的合作。该项目的目标是利用计算学习理论领域的思想和技术来产生算法,帮助用户或公司解决某些经济决策问题。计算学习理论研究如何从数据中自动学习好的预测规则,以及学习给定复杂性的规则本质上需要多少数据等问题。在经济决策中,人们通常有一定数量的数据(或最近的经验),必须从中推断出未来的行动方针。该项目旨在将这两个领域结合起来,以产生更好的经济决策工具。该项目特别关注三个具有挑战性的问题,其中计算学习理论的思想似乎特别有希望。第一个问题是,当客户随着时间的推移到达并且有分离的需求时,决定生产多少给定的产品,以及每个产品的生产成本服从规模经济。在这种情况下,目标是从少量的初始观察,到能够承诺生产每种产品多少的接近最佳的计划,以尽可能少的总成本满足未来的客户。第二个是关于市场细分的问题,当潜在客户有已知的属性,但这些属性与他们的偏好的关系是未知的。最后,最后一个问题是在只有拍卖结果信息是可观察到的情况下,如何推断拍卖中竞标者的模型。这些问题都涉及具有挑战性的推理任务,而计算学习理论的工具似乎非常适合这些任务。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
From Battlefields to Elections: Winning Strategies of Blotto and Auditing Games
从战场到选举:Blotto 和审计游戏的制胜策略
Collaborative PAC Learning
  • DOI:
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avrim Blum;Nika Haghtalab;Ariel D. Procaccia;Mingda Qiao
  • 通讯作者:
    Avrim Blum;Nika Haghtalab;Ariel D. Procaccia;Mingda Qiao
Efficient PAC Learning from the Crowd
  • DOI:
  • 发表时间:
    2017-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pranjal Awasthi;Avrim Blum;Nika Haghtalab;Y. Mansour
  • 通讯作者:
    Pranjal Awasthi;Avrim Blum;Nika Haghtalab;Y. Mansour
On Price versus Quality
关于价格与质量
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Blum, Avrim;Mansour, Yishay
  • 通讯作者:
    Mansour, Yishay
Opting Into Optimal Matchings
选择最佳匹配
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Avrim Blum其他文献

Learning Boolean Functions in an Infinite Attribute Space
在无限属性空间中学习布尔函数
  • DOI:
    10.1023/a:1022653502461
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Avrim Blum
  • 通讯作者:
    Avrim Blum
Clustering via Similarity Functions : Theoretical Foundations and Algorithms ∗
通过相似函数进行聚类:理论基础和算法*
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maria;Avrim Blum;S. Vempala
  • 通讯作者:
    S. Vempala
Machine Learning , Game Theory , and Mechanism Design for a Networked World
网络世界的机器学习、博弈论和机制设计
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avrim Blum
  • 通讯作者:
    Avrim Blum
Robust planning in domains with stochastic outcomes, adversaries, and partial observability
在具有随机结果、对手和部分可观察性的领域进行稳健规划
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Avrim Blum;Geoffrey J. Gordon;H. B. McMahan
  • 通讯作者:
    H. B. McMahan
Active Local Learning
积极的本地学习

Avrim Blum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Avrim Blum', 18)}}的其他基金

AF: Small: Foundations for Societal Machine Learning
AF:小:社会机器学习的基础
  • 批准号:
    2212968
  • 财政年份:
    2022
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Standard Grant
Graduate Research Fellowship Program (GRFP)
研究生研究奖学金计划(GRFP)
  • 批准号:
    2213382
  • 财政年份:
    2022
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Fellowship Award
Computer and Information Science and Engineering Graduate Fellowships (CSGrad4US)
计算机与信息科学与工程研究生奖学金(CSGrad4US)
  • 批准号:
    2240236
  • 财政年份:
    2022
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Fellowship Award
Institute for Data, Econometrics, Algorithms and Learning (IDEAL)
数据、计量经济学、算法和学习研究所 (IDEAL)
  • 批准号:
    2216899
  • 财政年份:
    2022
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Continuing Grant
AF: Small: Foundations for Collaborative and Information-Limited Machine Learning
AF:小:协作和信息有限的机器学习的基础
  • 批准号:
    1815011
  • 财政年份:
    2018
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Standard Grant
Graduate Research Fellowship Program (GRFP)
研究生研究奖学金计划(GRFP)
  • 批准号:
    1754881
  • 财政年份:
    2017
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Fellowship Award
AF: Small: New Directions in Learning Theory
AF:小:学习理论的新方向
  • 批准号:
    1800317
  • 财政年份:
    2017
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Standard Grant
AF: Small: New Directions in Learning Theory
AF:小:学习理论的新方向
  • 批准号:
    1525971
  • 财政年份:
    2015
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Standard Grant
AF: Small: Frameworks for Design and Analysis of Heuristics
AF:小:启发式设计和分析框架
  • 批准号:
    1116892
  • 财政年份:
    2011
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Standard Grant
ICES: Small: Collaborative Research: Algorithms and Mechanisms for Pricing, Influencing Dynamics, and Economic Optimization
ICES:小型:协作研究:定价、影响动态和经济优化的算法和机制
  • 批准号:
    1101215
  • 财政年份:
    2011
  • 资助金额:
    $ 3.29万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了