Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions

协作研究:具有互补约束和扩展的二元约束凸二次规划

基本信息

  • 批准号:
    1334639
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-15 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this collaborative research project is to undertake an in-depth study of the class of binary-constrained (BC), mathematical programs with complementarity constraints (MPCCs). Such programs form a broad class of constrained optimization problems with binary variables where some of the constraints are described by the disjunctive condition of complementarity. The latter features arise from a number of applied problems where the discrete variables are used to model binary decisions and the complementarity constraints are the result of some lower-level optimality or equilibrium conditions. Building on recent advances in the global resolution of linear programs with linear complementarity constraints (LPCCs) and their extensions to problems with convex quadratic objective functions (QPCCs), both with continuous variables only, this investigation will initially develop efficient solution methods for the global resolution of binary-constrained LPCCs and QPCCs. Extensions of the proposed methodology to the broader class of binary-constrained convex mathematical programs with complementarity constraints will be the second phase of the investigation.If successful, the results of this research will lead to improved understanding of such problems as optimal plant location in competitive markets, discrete-choice portfolio selection under risk, classification in medical decision making, and compressed sensing in signal and image processing, as well as many related applications in complex engineering and economic systems involving hierarchical decision making with logical constraints. Computational advances from diverse areas of optimization need to be integrated in order to effectively handle the discrete and continuous features of the problems under consideration. The integration of such subdomains of optimization and the expected theoretical advances in understanding the intrinsic properties of this new class of optimization problems form the intellectual core of the proposed project.
本合作研究项目的目标是深入研究一类具有互补约束的数学程序(mpcc)。这类规划形成了一类广义的二元变量约束优化问题,其中一些约束由互补的析取条件描述。后一种特征来自于一些应用问题,其中使用离散变量来模拟二元决策,而互补约束是一些较低水平的最优性或平衡条件的结果。基于线性互补约束线性规划(lpcc)的全局解决及其对凸二次目标函数(qpcc)问题的扩展的最新进展,本研究将初步开发二元约束lpcc和qpcc的全局解决的有效方法。将提出的方法扩展到具有互补约束的二进制约束凸数学规划的更广泛类别将是研究的第二阶段。如果成功,本研究的结果将有助于提高对竞争市场中最优工厂选址、风险下的离散选择投资组合、医疗决策中的分类、信号和图像处理中的压缩感知等问题的理解,以及在涉及逻辑约束的分层决策的复杂工程和经济系统中的许多相关应用。为了有效地处理所考虑的问题的离散和连续特征,需要综合不同优化领域的计算进展。这些优化子领域的整合以及在理解这类新型优化问题的内在属性方面的预期理论进展构成了拟议项目的智力核心。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andreas Waechter其他文献

A complete nonlinear system solver using affine arithmetic
使用仿射算法的完整非线性系统求解器
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Baharev;Endre R´ev;Jean;G. Trombettoni;Ignacio Araya;Arnold Neumaier;R. B. Kearfott;Lubomir Kolev;Andrew Makhorin;Stefan Vigerske;Andreas Waechter;Peter Spel;Renata Silva;Luis Nunes;Iain Duff;John K. Reid
  • 通讯作者:
    John K. Reid

Andreas Waechter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andreas Waechter', 18)}}的其他基金

Novel Decomposition Techniques Enabling Scalable Computational Frameworks for Large-Scale Nonlinear Optimization Problems
新颖的分解技术为大规模非线性优化问题提供可扩展的计算框架
  • 批准号:
    2012410
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Algorithms for Nonlinear Nonconvex Optimization under Uncertainty
不确定性下的非线性非凸优化算法
  • 批准号:
    1522747
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Novel Algorithms for Nonlinear Optimization
非线性优化的新算法
  • 批准号:
    1216920
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Understanding Compact Binary Formation With Gravitational Wave Observations
合作研究:通过引力波观测了解致密双星形成
  • 批准号:
    2307147
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Understanding Compact Binary Formation With Gravitational Wave Observations
合作研究:通过引力波观测了解致密双星形成
  • 批准号:
    2307146
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
  • 批准号:
    2208865
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: A qualitative inquiry into sex/gender narratives in undergraduate biology and their impacts on transgender, non-binary, and gender non-conforming students
合作研究:对本科生物学中的性/性别叙事及其对跨性别、非二元和性别不合格学生的影响进行定性调查
  • 批准号:
    2201809
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: Compositional and Atomic-Scale Ordering Effects on Aqueous Passivation of Binary BCC and FCC Alloys
合作研究:二元 BCC 和 FCC 合金水相钝化的成分和原子尺度有序效应
  • 批准号:
    2208848
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: A qualitative inquiry into sex/gender narratives in undergraduate biology and their impacts on transgender, non-binary, and gender non-conforming students
合作研究:对本科生物学中的性/性别叙事及其对跨性别、非二元和性别不合格学生的影响进行定性调查
  • 批准号:
    2201808
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: A qualitative inquiry into sex/gender narratives in undergraduate biology and their impacts on transgender, non-binary, and gender non-conforming students
合作研究:对本科生物学中的性/性别叙事及其对跨性别、非二元和性别不合格学生的影响进行定性调查
  • 批准号:
    2201810
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2227080
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2108072
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: WoU-MMA: Toward Binary Neutron Star Mergers on a Moving-mesh
合作研究:WoU-MMA:在移动网格上实现双中子星合并
  • 批准号:
    2108269
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了