Collaborative Research: Optimizing Direct-Marketing Strategies in Non-Profit Fundraising: An Integrated Framework for Segmentation, Estimation and Control
合作研究:优化非营利筹款中的直接营销策略:细分、估算和控制的综合框架
基本信息
- 批准号:1335104
- 负责人:
- 金额:$ 19.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this collaborative award is to provide insights into links between direct-marketing strategies and their impact on the performance (revenue generation, member retention) of nonprofit organizations, through the linkage of a general class of sophisticated optimization tools (stochastic optimal control) with state-of-the-art estimation methods (finite mixture models). This integration allows the proposed framework to serve as a practical tool to segment alumni/donor populations into homogeneous groups, based on their contribution sequences, which can be targeted with specific marketing actions. The framework's capability to process contribution sequences, i.e., longitudinal data, provides fundamental new insights into how direct-marketing strategies affect donor contribution behavior, and informs data acquisition strategies (via surveys and field experiments) aimed at model calibration and validation.If successful, the results of this research will provide a rigorous mechanism to infer and segment the population based on unobserved heterogeneities, e.g., personality traits that influence the propensity of an individual to donate in response to solicitations. While there is ample empirical evidence that such differences can be statistically significant, existing models to support direct marketing activities are only capable of explaining these differences as random variations within the population. In contrast, the methodology provides a basis to tailor direct-marketing policies to optimize specific performance criteria. Moreover, the research will develop methodological tools that can guide decision-making for a broad set of segmentation, estimation and control problems in other areas. For example, in the management of transportation systems, the problem is to segment facilities that share similar characteristics, and to find optimal resource allocation policies for each of the groups.
该合作奖的目的是通过将一般类型的复杂优化工具(随机最优控制)与最先进的估计方法(有限混合模型)联系起来,深入了解直接营销策略及其对非营利组织绩效(创收,会员保留)的影响之间的联系。这一整合使拟议的框架成为一个实用工具,可根据校友/捐助者的捐款顺序将其划分为同类群体,并可针对这些群体采取具体的营销行动。框架处理贡献序列的能力,即,纵向数据,为直接营销策略如何影响捐赠行为提供了基本的新见解,并为旨在模型校准和验证的数据获取策略(通过调查和实地实验)提供了信息。如果成功,这项研究的结果将提供一个严格的机制,根据未观察到的异质性推断和划分人口,例如,影响个人响应募捐的倾向的人格特征。虽然有充分的经验证据表明,这种差异在统计上可能是显著的,但支持直接营销活动的现有模型只能将这些差异解释为人口中的随机变化。与此相反,该方法提供了一个基础,定制直销政策,以优化具体的业绩标准。此外,该研究将开发方法工具,可以指导决策的一系列广泛的细分,估计和控制问题在其他领域。例如,在运输系统的管理中,问题是将具有相似特征的设施分段,并为每个组找到最佳资源分配策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pablo Durango-Cohen其他文献
The impact factor: The effect of actual impact information and perceived donation efficacy on donors' repeated donations
影响因素:实际影响信息和感知捐赠效力对捐赠者重复捐赠的影响
- DOI:
10.1016/j.jesp.2025.104720 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:3.100
- 作者:
Liat Levontin;Zohar Gilad;Elizabeth Durango-Cohen;Pablo Durango-Cohen - 通讯作者:
Pablo Durango-Cohen
Pablo Durango-Cohen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pablo Durango-Cohen', 18)}}的其他基金
CAREER: An Integrated Framework for Infrastructure Management: Exploiting Advanced Inspection Technologies to Support Condition Assessment, Forecasting and Decision-Making
职业:基础设施管理综合框架:利用先进的检测技术支持状况评估、预测和决策
- 批准号:
0547471 - 财政年份:2006
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Optimizing KTaO3 Superconductivity for Quantum Applications
合作研究:优化 KTaO3 超导性以实现量子应用
- 批准号:
2327535 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
- 批准号:
2329273 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Developing and Optimizing Reflection-Informed STEM Learning and Instruction by Integrating Learning Technologies with Natural Language Processing
合作研究:EAGER:通过将学习技术与自然语言处理相结合来开发和优化基于反思的 STEM 学习和教学
- 批准号:
2329274 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Collaborative Research: Optimizing KTaO3 Superconductivity for Quantum Applications
合作研究:优化 KTaO3 超导性以实现量子应用
- 批准号:
2327534 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Collaborative Research: Optimizing KTaO3 Superconductivity for Quantum Applications
合作研究:优化 KTaO3 超导性以实现量子应用
- 批准号:
2408890 - 财政年份:2023
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Collaborative Research: Prechlorination, aging, and backwashing effects on spatiotemporal ultrafiltration fouling: Optimizing productivity by combining experiments and theory
合作研究:预氯化、老化和反洗对时空超滤污垢的影响:通过实验和理论相结合优化生产率
- 批准号:
2211035 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Co-optimizing Spectral Algorithms and Systems for High-Performance Graph Learning
合作研究:SHF:中:协同优化高性能图学习的谱算法和系统
- 批准号:
2212370 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Co-Optimizing Computation and Data Transformations for Sparse Tensors
协作研究:SHF:中:稀疏张量的协同优化计算和数据转换
- 批准号:
2107556 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Continuing Grant
Collaborative Research: Prechlorination, aging, and backwashing effects on spatiotemporal ultrafiltration fouling: Optimizing productivity by combining experiments and theory
合作研究:预氯化、老化和反洗对时空超滤污垢的影响:通过实验和理论相结合优化生产率
- 批准号:
2211001 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: Optimizing discovery with multi-epoch photometric survey data
合作研究:CDS
- 批准号:
2206341 - 财政年份:2022
- 资助金额:
$ 19.5万 - 项目类别:
Standard Grant