SusChEM: Collaborative Research: Holey Reduced-Graphene-Oxide Film for Na-Ion Battery Anode

SusChEM:合作研究:用于钠离子电池阳极的多孔还原石墨烯氧化物薄膜

基本信息

  • 批准号:
    1335979
  • 负责人:
  • 金额:
    $ 22.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

PI: Hu, Liangbing / Barone, VeronicaProposal Number: 1335979 / 1335944Institution: University of Maryland College Park / Central Michigan UniversityTitle: Collaborative Research: Holey Reduced-Graphene-Oxide Film for Na-Ion Battery AnodeDue to the low cost and earth abundance of sodium, Na-ion batteries (NIB) are emerging as a viable technology to meet the requirements for transportation and other energy storage applications. Rational structure designs that allow effective manipulation of electrons and ions in multiporous electrodes are critical. Although Na is much richer on earth than Li, Na ion has a much larger size, which poses grand challenges for Na-ion technologies. There has been an increasing interest on Na ion batteries in the past few years. Novel materials for cathodes, anodes, and electrolytes were recently reported. A few promising cathode materials are demonstrated, such as Na2/3Mn1/2Fe1/2O2, Na0.44MnO2 and NaMPO4 (M=Fe, Ca, Mn). For the anode electrode, hard carbon is shown to present a capacity of 250 mAh/g, but with a poor rate and cycling performance. High-performance and low cost anode materials are still needed for the success of Na-ion batteries. Two-dimensional carbon materials are promising as Na ions intercalate in the planes to achieve a highly reversible capacity; however, challenges exist in 2D carbon materials for Na-ion batteries. There is neither a successful demonstration of working electrodes, nor fundamental studies of Na ion storage mechanisms.In this project, experimental and computational tools will be combined to investigate and discern the three possible Na ion storage mechanisms: Na ion intercalation, cluster formation, and redox reactions with functional groups. Fundamental charge storage kinetics will also be studied. Rational nanostructures based on holey reduced graphene oxide (H-RGO) for high-performance Na-ion battery anodes will be designed by exploiting their fundamental charge storage mechanisms. Preliminary experiments on H-RGO detailed in this proposal, show promising results for the targeted applications. Results on controlled experiments agree well with preliminary computational predictions based on density functional theory. The proposed joint effort from experiments and computation will overcome the fundamental challenges in Na-ion battery anodes based on carbon nanomaterials.Much more challenging than Li-ion batteries, Na-ion devices require better materials design and electrochemistry science to achieve similar storage capacity (thermodynamics) and rate performance (kinetics). This project focuses on the materials structure and fundamentals related to the manipulation of Na ions in H-RGO nanostructures. Materials design, defects manipulation, nanoscale ion transport through holes, intercalation barriers, interactions with functional groups, Na cluster formation, etc., will be thoroughly investigated through a collaborative and synergistic approach between theory, computation, and experiments. From a pragmatic viewpoint, the proposed atomic level understanding will facilitate the optimization of anode materials to achieve Na specific capacities at high current density rates similar to the ones offered by Li-ion anodes, by exploiting the large surface area of H-RGO and controlling its chemical nature.The successful demonstration of carbon materials as anodes, coupled with the recent development of cathode materials, will enable the use of low-cost Na-ion technologies for energy storage. This will permit the incorporation of solar and wind energy into the renewable energy landscape. The research will be integrated in both graduate and undergraduate courses with the goal of attracting students to the area early in their careers. Research in a collaborative environment will also give undergraduate and graduate students opportunities to solve problems from both experiments and computations.
项目负责人:Hu, Liangbing / Barone, veronica提案编号:1335979 / 1335944机构:马里兰大学帕克分校/中密歇根大学标题:合作研究:用于钠离子电池阳极的多孔还原氧化石墨烯薄膜由于钠的低成本和地球丰富度,钠离子电池(NIB)正在成为一种可行的技术,以满足运输和其他储能应用的要求。合理的结构设计允许在多孔电极中有效操纵电子和离子是至关重要的。虽然地球上Na的含量比Li丰富得多,但Na离子的体积要大得多,这给Na离子技术带来了巨大的挑战。在过去的几年里,人们对钠离子电池的兴趣越来越大。阴极、阳极和电解质的新材料最近被报道。介绍了几种极具前景的正极材料,如Na2/3Mn1/2Fe1/2O2、Na0.44MnO2和NaMPO4 (M=Fe, Ca, Mn)。对于阳极电极,硬碳显示出250 mAh/g的容量,但具有较差的速率和循环性能。高性能和低成本的负极材料仍然是钠离子电池成功的必要条件。二维碳材料是很有前途的,因为Na离子嵌入在平面上,实现了高度可逆的容量;然而,用于钠离子电池的二维碳材料存在挑战。既没有成功的工作电极的演示,也没有对钠离子储存机制的基础研究。在这个项目中,实验和计算工具将结合起来研究和辨别三种可能的Na离子储存机制:Na离子插入,簇形成和与官能团的氧化还原反应。基本电荷存储动力学也将被研究。基于孔洞还原氧化石墨烯(H-RGO)的高性能钠离子电池阳极的合理纳米结构将利用其基本的电荷存储机制来设计。本提案详细介绍了H-RGO的初步实验,显示了有针对性应用的良好结果。对照实验结果与基于密度泛函理论的初步计算预测吻合较好。实验和计算的联合努力将克服基于碳纳米材料的钠离子电池阳极的基本挑战。比锂离子电池更具挑战性的是,钠离子器件需要更好的材料设计和电化学科学来实现类似的存储容量(热力学)和速率性能(动力学)。本项目主要研究与H-RGO纳米结构中Na离子操纵相关的材料结构和基本原理。材料设计,缺陷操纵,纳米级离子通过空穴传输,嵌入势垒,与官能团的相互作用,Na簇形成等,将通过理论,计算和实验之间的协作和协同方法进行深入研究。从实用的角度来看,所提出的原子水平理解将有助于优化阳极材料,通过利用H-RGO的大表面积和控制其化学性质,在高电流密度率下实现与锂离子阳极类似的Na比容量。碳材料作为阳极的成功演示,加上阴极材料的最新发展,将使低成本的钠离子技术用于储能成为可能。这将允许将太阳能和风能纳入可再生能源领域。该研究将被整合到研究生和本科课程中,目的是吸引学生在职业生涯早期进入该地区。在协作环境下的研究也将给本科生和研究生提供解决实验和计算问题的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liangbing Hu其他文献

Stretchable, breathable, wearable batteries using a holey design
采用多孔设计的可拉伸、透气、可穿戴电池
  • DOI:
    10.1016/j.matt.2025.101959
  • 发表时间:
    2025-03-05
  • 期刊:
  • 影响因子:
    17.500
  • 作者:
    Lin Xu;Qiongyu Chen;Sumedha Vishalini Pichchamuttu;Lianping Wu;Elijah Pate;Christine Wu;Tangyuan Li;Xueying Zheng;Chong Yang;Kexia Jin;Ping Liu;Teng Li;Liangbing Hu
  • 通讯作者:
    Liangbing Hu
Boron nitride enhanced electric insulation paper for extending transformer thermal life
氮化硼增强型电力绝缘纸用于延长变压器热寿命
  • DOI:
    10.1016/j.matdes.2025.114112
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    7.900
  • 作者:
    Yue Xu;Tejaswi Soori;Qian Zhang;J.Y. Zhu;J. Keith Nelson;Liangbing Hu;Vaibhav Bahadur;Robert Hebner
  • 通讯作者:
    Robert Hebner
A stable atmospheric-pressure plasma for extreme-temperature synthesis
用于极端温度合成的稳定大气压等离子体
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Hua Xie;Ning Liu;Qian Zhang;Hongtao Zhong;Liqun Guo;Xinpeng Zhao;Daozheng Li;Shufeng Liu;Zhennan Huang;A. Lele;Alexandra H. Brozena;Xizheng Wang;Keqi Song;Sophia Chen;Yan Yao;Miaofang Chi;Wei Xiong;Jiancun Rao;Minhua Zhao;M. Shneider;Jian Luo;Ji;Yiguang Ju;Liangbing Hu
  • 通讯作者:
    Liangbing Hu
Structure–property–function relationships of natural and engineered wood
天然木材和工程木材的结构-性能-功能关系
  • DOI:
    10.1038/s41578-020-0195-z
  • 发表时间:
    2020-05-04
  • 期刊:
  • 影响因子:
    86.200
  • 作者:
    Chaoji Chen;Yudi Kuang;Shuze Zhu;Ingo Burgert;Tobias Keplinger;Amy Gong;Teng Li;Lars Berglund;Stephen J. Eichhorn;Liangbing Hu
  • 通讯作者:
    Liangbing Hu
Ion-chelated porous chitosan nanocrystal for highly efficient postharvest preservation
离子螯合多孔壳聚糖纳米晶体用于高效采后保鲜
  • DOI:
    10.1016/j.matt.2024.06.004
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    18.9
  • 作者:
    Peihua Ma;Xiaoxue Jia;Xin Zhang;Yue Li;Yiyang He;Tangyuan Li;Christine Wu;Yong Hoon Joo;Seong;Taotao Meng;Alexandra H. Brozena;Stephanie Li;Qin Wang;Cheng;R. Briber;Yimin Mao;Liangbing Hu
  • 通讯作者:
    Liangbing Hu

Liangbing Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liangbing Hu', 18)}}的其他基金

SNM: Continuous Synthesis and Stabilization of Nanoparticles in a Carbon Matrix Using Rapid Thermal Shock
SNM:利用快速热冲击连续合成和稳定碳基体中的纳米颗粒
  • 批准号:
    1635221
  • 财政年份:
    2016
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Stitching and Healing Graphene Flakes by Atomic-Layer-Deposition for Roll-to-Roll Printing of Transparent Conducting Electrodes
通过原子层沉积缝合和修复石墨烯薄片,用于卷对卷印刷透明导电电极
  • 批准号:
    1300361
  • 财政年份:
    2013
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324346
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SUSCHEM: Engineering Polymer-Nanocatalyst Membranes for Direct Capture of CO2 and Electrochemical Conversion to C2+ Liquid Fuel
合作研究:SUSCHEM:用于直接捕获 CO2 和电化学转化为 C2 液体燃料的工程聚合物纳米催化剂膜
  • 批准号:
    2324345
  • 财政年份:
    2023
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Identification of the critical length scales and chemistries responsible for the anti-fouling properties of heterogeneous surfaces
SusChEM:合作研究:确定负责异质表面防污性能的临界长度尺度和化学成分
  • 批准号:
    2023847
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SusChem Collaborative Research: Process Optimization of Novel Routes for the Production of bio-based Para-Xylene
SusChem 合作研究:生物基对二甲苯生产新路线的工艺优化
  • 批准号:
    2005905
  • 财政年份:
    2019
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Continuing Grant
SusChEM: Collaborative Research: Efficient biological activation and conversion of short-chain hydrocarbons
SusChEM:合作研究:短链碳氢化合物的高效生物活化和转化
  • 批准号:
    1938893
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
  • 批准号:
    1803630
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Engineering the thermotolerant yeast Kluyveromyces marxianus for the synthesis of biobased chemicals
合作研究:SusChEM:改造耐热酵母马克斯克鲁维酵母用于合成生物基化学品
  • 批准号:
    1803677
  • 财政年份:
    2018
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Unlocking the fundamental mechanisms that underlie selectivity in oleochemical producing enzymes
合作研究:SusChEM:解锁油脂化学生产酶选择性的基本机制
  • 批准号:
    1703504
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Environmental Fate and Effects of Dichloroacetamide Safeners: An Overlooked Class of Emerging Contaminants?
SusChEM:合作研究:二氯乙酰胺安全剂的环境命运和影响:一类被忽视的新兴污染物?
  • 批准号:
    1702610
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SusChEM: Mechanistic origins of synergistic effects in plasma-catalysis
合作研究:SusChEM:等离子体催化协同效应的机制起源
  • 批准号:
    1703211
  • 财政年份:
    2017
  • 资助金额:
    $ 22.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了