Collaborative Research: Analysis and design of textured super-hydrophobic surfaces capable of preventing ice formation on wind turbine blades

合作研究:分析和设计能够防止风力涡轮机叶片结冰的纹理超疏水表面

基本信息

  • 批准号:
    1336502
  • 负责人:
  • 金额:
    $ 25.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

PI: Raessi, Mehdi / Lackner, MatthewProposal Number: 1336232 / 1336502Institution: University of Massachusetts, Dartmouth / University of Massachusetts AmherstTitle: Collaborative Research: Analysis and design of textured super-hydrophobic surfaces capable of preventing ice formation on wind turbine bladesWind energy is a clean, renewable, and domestic energy source that is abundant in the U.S., in particular in cold climates where ice formation is common. The potential to generate renewable wind energy in cold climates is immense, both in the U.S. and internationally. The current wind energy capacity in cold climates is only 500 MW, however, which is primarily due to the challenges posed by icing at these sites, which has numerous detrimental effects. Mitigation efforts to date have had moderate success at reducing ice accumulation, but reduce efficiency. The research objectives of this project are to better understand the physics of ice formation on wind turbine blades using advanced computational models, to investigate the aerodynamics of wind turbine airfoils and blades that utilize textured surfaces using computational fluid dynamics and a novel turbulence model, and finally to design and then valuate textured super-ice-phobic surfaces for wind turbine blades in order to prevent ice formation. The project aims at addressing the major issue of ice accretion on wind turbine blades by combining the expertise of PIs in wind turbine aerodynamics, turbulence modeling, and multiphase flows and solidification. The research on textured super-hydrophobic surfaces will have a transformative effect on wind energy development in cold climates by reducing ice formation, and thus increasing the turbine?s efficiency and reliability.This project will be the first study to investigate the performance of textured super-hydrophobic surfaces under real-world conditions, and the first to design textured super-ice-phobic surfaces that are specially engineered for the flow fields around wind turbine blades. By taking into account the local flow field around a blade in our computational simulations, we will optimally design texture patterns that may vary along a blade, depending on the relative velocity of the blade and water droplets, in order to achieve most effective super-ice-phobic surfaces. Furthermore, the CFD tool that will be utilized represents a significant advance over the current state of the art for analyzing wind turbine airfoil and blade aerodynamics. This work will create a computational framework that uses a turbulence model designed for the complex physics (including transition, separation, 3D boundary layers, and rotation) occurring on a wind turbine blade, particularly those with textured ice-phobic surfaces. These expected outcomes will provide the predictive capabilities that are necessary to analyze and design the unique ice-phobic blade surfaces that are capable of operating in cold environments, enabling increased development of wind energy in these regions.Accomplishing the research and student education objectives will benefit society via increased production of renewable energy in the U.S. and internationally. An international partnership with CanmetENERGY of Natural Resources Canada will result from this project, including data sharing and researcher interaction. Moreover, the research and education plans offer exciting opportunities to promote cross-campus collaboration among two campuses within the University of Massachusetts system. The participation of women and underrepresented minorities in engineering will be increased by the activities in this project. The computational tools developed in this project will be utilized in the Computer Girl Power summer camp at UMass Dartmouth. Undergraduate RAs will be recruited using the NSF-funded LSAMP program at UMass Amherst and from UMass Dartmouth?s diverse population of undergraduates, 40% of whom are underrepresented in the sciences. An extensive dissemination plan has been developed to educate the general public about issues of wind energy and icing in cold climates, including using public radio and YouTube.
PI:Raessi,Mehdi/Lackner,Matthew建议编号:1336232/1336502机构:马萨诸塞大学达特茅斯分校/马萨诸塞大学阿默斯特分校标题:合作研究:分析和设计具有纹理的超疏水表面,能够防止风力涡轮机叶片上结冰风能是一种清洁、可再生的家庭能源,在美国非常丰富,尤其是在经常结冰的寒冷气候中。无论是在美国还是在国际上,在寒冷的气候下生产可再生风能的潜力都是巨大的。然而,目前寒冷气候下的风能发电能力仅为500兆瓦,这主要是由于这些地点的结冰带来的挑战,这具有许多不利影响。到目前为止,缓解努力在减少冰层积累方面取得了一定的成功,但降低了效率。该项目的研究目标是使用先进的计算模型更好地了解风力机叶片上结冰的物理过程,使用计算流体力学和一种新的湍流模型来研究风力机翼型和使用纹理表面的叶片的空气动力学,最后设计并评估风力机叶片的纹理超憎冰表面以防止结冰。该项目旨在通过结合PI在风力涡轮机空气动力学、湍流建模以及多相流和凝固方面的专业知识来解决风力涡轮机叶片上结冰的主要问题。纹理超疏水表面的研究将通过减少结冰对寒冷气候下风能的开发产生革命性的影响,从而提高涡轮机的效率和可靠性。该项目将是第一个研究真实条件下纹理超疏水表面性能的研究,也是第一个设计专门针对风力机叶片周围流场设计的纹理超疏水表面。通过在计算模拟中考虑叶片周围的局部流场,我们将根据叶片和水滴的相对速度,优化设计叶片上可能会发生变化的纹理图案,以获得最有效的超级恐冰表面。此外,将使用的CFD工具在分析风力涡轮机翼型和叶片空气动力学方面比目前的技术水平有了显著的进步。这项工作将创建一个计算框架,使用为风力涡轮机叶片上发生的复杂物理(包括过渡、分离、3D边界层和旋转)设计的湍流模型,特别是那些具有纹理恐冰表面的叶片。这些预期结果将提供必要的预测能力,以分析和设计能够在寒冷环境中运行的独特的恐冰叶片表面,从而促进这些地区风能的发展。完成研究和学生教育目标将通过增加美国和国际上的可再生能源产量来造福社会。该项目将与加拿大自然资源公司的CanmetENERGY建立国际伙伴关系,包括数据共享和研究人员互动。此外,研究和教育计划提供了令人兴奋的机会,促进马萨诸塞大学系统内两个校区之间的跨校园合作。这一项目的活动将增加妇女和任职人数不足的少数群体对工程学的参与。在这个项目中开发的计算工具将在达特茅斯大学的计算机女孩力量夏令营中使用。本科生RAS将通过美国国家科学基金会资助的LSAMP项目在马萨诸塞州阿默斯特大学和达特茅斯大学S分校招收。本科生群体多样,其中40%在科学界代表性不足。已经制定了一项广泛的传播计划,以教育普通公众关于寒冷气候下的风能和结冰问题,包括使用公共广播和YouTube。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clean, green, and just? Community perspectives on the renewable energy transition in a New England city
清洁、绿色、公正?
  • DOI:
    10.1016/j.sctalk.2023.100188
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harper, Krista;Bates, Alison;Nwadiaru, Ogechi Vivian;Cantor, Julia;Cowan, Makaylah;Shokooh, Marina Pineda
  • 通讯作者:
    Shokooh, Marina Pineda
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Lackner其他文献

Matthew Lackner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Lackner', 18)}}的其他基金

Enhancing Resiliency and Increasing Equity in the Transition to a Sustainable Energy Future
在向可持续能源未来转型的过程中增强弹性并增加公平性
  • 批准号:
    2021693
  • 财政年份:
    2020
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
GCR: The Transition to a Sustainable Energy Future
GCR:向可持续能源未来的过渡
  • 批准号:
    2020888
  • 财政年份:
    2020
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400111
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400115
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400112
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344795
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344793
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344790
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344789
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344791
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344792
  • 财政年份:
    2024
  • 资助金额:
    $ 25.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了