SI2-SSI: Collaborative Research: Scalable, Extensible, and Open Framework for Ground and Excited State Properties of Complex Systems
SI2-SSI:协作研究:复杂系统基态和激发态属性的可扩展、可扩展和开放框架
基本信息
- 批准号:1339804
- 负责人:
- 金额:$ 138.02万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer simulation plays a central role in helping us understand, predict, and engineer the physical and chemical properties of technological materials systems such as semiconductor devices, photovoltaic systems, chemical reactions and catalytic behavior. Despite significant progress in performing realistic simulations in full microscopic detail, some problems are currently out of reach: two examples are the modeling of electronic devices with multiple functional parts based on new materials such as novel low power computer switches that would revolutionize the Information Technology industry, and the photovoltaic activity of complex interfaces between polymers and inorganic nanostructures that would enhance US energy self-reliance. The research program of this collaborative software institute aims to create an open and effective scientific software package that can make efficient use of cutting-edge high performance computers (HPC) to solve challenging problems involving the physics and chemistry of materials. By having such software available, this software initiative will have multiple broad impacts. First, the community of materials scientists will be able to study next-generation problems in materials physics and chemistry, and computer science advances that enable the software will be demonstrated and made accessible for both communities which will help cross-fertilize further such collaborative efforts. Second, the capability of simulating and engineering more complex materials systems and technological devices could play a role in helping the US continue is competitive edge in science, technology, and education. Third, through training of young scientists, direct outreach to the broader scientific community through workshops and conferences, and educational programs ranging from secondary to graduate levels, the power, importance, and capabilities of computational modeling, materials science, and computer science methodologies that enable the science will be communicated to a broad audience. Finally, by enabling the refinement of existing materials systems as well as discovery of new materials systems, the resulting scientific advances can help broadly impact society via technological improvements: in terms of the two examples provided above, (a) the successful design of new electronic device paradigms helps significantly advance the digital revolution by permitting the introduction of smaller, more efficient, and more capable electronic circuits and information processing systems, and (b) successful creation of inexpensive, easy-to-fabricate, and durable photovoltaic materials and devices can lead to cleaner forms of energy production while reducing reliance on fossil fuels.The technical goal is to greatly enhance the open software tool OPENATOM to advance discovery in nanoscience and technology. OPENATOM will be delivered as a open, robust and validated software package capable of utilizing HPC architectures efficiently to describe the electronic structure of complex materials systems from first principles. In terms of describing electronic ground-states, OPENATOM will be enhanced by features such as improved configurational sampling methods, hybrid density functionals, and incorporation of fast super-soft pseudopotential techniques. In addition, the team will incorporate the many-body GW-BSE approach for electronic excitations that permits accurate computation of electronic energy levels, optical absorption and emission, and luminescence. Ultimately, such an extensible software framework will permit accurate electronic structure computations to employ effectively future HPC platforms with 10,000,000 cores.
计算机模拟在帮助我们理解、预测和设计技术材料系统(如半导体器件、光伏系统、化学反应和催化行为)的物理和化学性质方面起着核心作用。尽管在执行全微观细节的逼真模拟方面取得了重大进展,但目前仍有一些问题无法解决:两个例子是基于新材料的具有多个功能部件的电子设备的建模,例如将彻底改变信息技术产业的新型低功耗计算机开关,以及聚合物和无机纳米结构之间复杂界面的光伏活动,这将增强美国的能源自立。这个合作软件研究所的研究项目旨在创建一个开放和有效的科学软件包,可以有效地利用尖端的高性能计算机(HPC)来解决涉及材料物理和化学的具有挑战性的问题。通过提供这样的软件,这个软件计划将产生多种广泛的影响。首先,材料科学家社区将能够研究材料物理和化学的下一代问题,计算机科学的进步使软件能够被两个社区展示和访问,这将有助于进一步促进这种合作努力。其次,模拟和设计更复杂的材料系统和技术设备的能力可以帮助美国保持在科学、技术和教育方面的竞争优势。第三,通过对年轻科学家的培训,通过研讨会和会议,以及从中学到研究生水平的教育项目,直接接触到更广泛的科学界,计算建模、材料科学和计算机科学方法的力量、重要性和能力,使科学能够传播给广泛的受众。最后,通过改进现有材料系统以及发现新材料系统,由此产生的科学进步可以通过技术改进广泛地影响社会:就上面提供的两个例子而言,(a)新的电子设备范例的成功设计通过允许引入更小、更高效、更有能力的电子电路和信息处理系统,有助于显著推进数字革命;(b)成功创造廉价、易于制造和耐用的光伏材料和设备可以导致更清洁的能源生产形式,同时减少对化石燃料的依赖。技术目标是大大增强开放软件工具OPENATOM,以推进纳米科学和技术的发现。OPENATOM将作为一个开放的、健壮的、经过验证的软件包交付,能够有效地利用HPC架构从第一性原理描述复杂材料系统的电子结构。在描述电子基态方面,OPENATOM将通过改进的配置采样方法、混合密度函数和快速超软伪势技术的结合等特性得到增强。此外,该团队将结合多体GW-BSE方法用于电子激发,允许精确计算电子能级,光学吸收和发射以及发光。最终,这样一个可扩展的软件框架将允许精确的电子结构计算有效地应用于未来的1000万核高性能计算平台。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sohrab Ismail-Beigi其他文献
Picoscale materials engineering
皮克级材料工程
- DOI:
10.1038/natrevmats.2017.60 - 发表时间:
2017-09-19 - 期刊:
- 影响因子:86.200
- 作者:
Sohrab Ismail-Beigi;Frederick J. Walker;Ankit S. Disa;Karin M. Rabe;Charles H. Ahn - 通讯作者:
Charles H. Ahn
Sohrab Ismail-Beigi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sohrab Ismail-Beigi', 18)}}的其他基金
NRT-QL: Interdisciplinary Graduate Program in Quantum Materials Science and Engineering
NRT-QL:量子材料科学与工程跨学科研究生项目
- 批准号:
2244310 - 财政年份:2023
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
CMMT: Slave-boson approach for electronically correlated metal oxides
CMMT:电子相关金属氧化物的从属玻色子方法
- 批准号:
2237469 - 财政年份:2022
- 资助金额:
$ 138.02万 - 项目类别:
Continuing Grant
EAGER: Enabling Quantum Leap: 2D metal oxides (2DTMOs) hosting strongly bound excitons
EAGER:实现量子飞跃:拥有强束缚激子的二维金属氧化物 (2DTMO)
- 批准号:
1838463 - 财政年份:2018
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
Massively-parallel Electronic Structure Calculations for Energy Applications
能源应用的大规模并行电子结构计算
- 批准号:
1614491 - 财政年份:2016
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
First Principles Investigations of Boron Nanostructures
硼纳米结构的第一性原理研究
- 批准号:
1104974 - 财政年份:2011
- 资助金额:
$ 138.02万 - 项目类别:
Continuing Grant
First Principles Investigations of Boron Nanostructures
硼纳米结构的第一性原理研究
- 批准号:
0808665 - 财政年份:2008
- 资助金额:
$ 138.02万 - 项目类别:
Continuing Grant
相似国自然基金
考虑SSI效应的导管架式海洋平台抗震性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
考虑SSI的层间隔震高层建筑结构在三维地震下的响应研究
- 批准号:52168072
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
考虑SSI效应的大型储罐动力学特性及其隔板减晃研究
- 批准号:51978336
- 批准年份:2019
- 资助金额:61.0 万元
- 项目类别:面上项目
考虑SSI效应的摇摆墙-框架结构抗震机理及性能评估方法研究
- 批准号:51978524
- 批准年份:2019
- 资助金额:60.0 万元
- 项目类别:面上项目
考虑能量需求和SSI效应的RC梁式桥基于性能的抗震设计方法
- 批准号:50908014
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2039142 - 财政年份:2020
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: Einstein Toolkit Community Integration and Data Exploration
SI2-SSI:协作研究:Einstein Toolkit 社区集成和数据探索
- 批准号:
2114580 - 财政年份:2020
- 资助金额:
$ 138.02万 - 项目类别:
Continuing Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
2001752 - 财政年份:2019
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Open Source Support for Massively Parallel, Generic Finite Element Methods
合作研究:SI2-SSI:对大规模并行、通用有限元方法的开源支持
- 批准号:
1741870 - 财政年份:2017
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Expanding Volunteer Computing
合作研究:SI2-SSI:扩展志愿者计算
- 批准号:
1664022 - 财政年份:2017
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis
合作研究:SI2-SSI:通过数据科学、建模和分析的协作集成推进水文知识的网络基础设施
- 批准号:
1664061 - 财政年份:2017
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
SI2-SSI: Collaborative Research: Scalable Infrastructure for Enabling Multiscale and Multiphysics Applications in Fluid Dynamics, Solid Mechanics, and Fluid-Structure Interaction
SI2-SSI:协作研究:可扩展基础设施,支持流体动力学、固体力学和流固耦合中的多尺度和多物理场应用
- 批准号:
1836797 - 财政年份:2017
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Modules for Experiments in Stellar Astrophysics
合作研究:SI2-SSI:恒星天体物理实验模块
- 批准号:
1663684 - 财政年份:2017
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Inquiry-Focused Volumetric Data Analysis Across Scientific Domains: Sustaining and Expanding the yt Community
合作研究:SI2-SSI:跨科学领域以调查为中心的体积数据分析:维持和扩展 yt 社区
- 批准号:
1663893 - 财政年份:2017
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant
Collaborative Research: SI2-SSI: Cyberinfrastructure for Advancing Hydrologic Knowledge through Collaborative Integration of Data Science, Modeling and Analysis
合作研究:SI2-SSI:通过数据科学、建模和分析的协作集成推进水文知识的网络基础设施
- 批准号:
1664018 - 财政年份:2017
- 资助金额:
$ 138.02万 - 项目类别:
Standard Grant