Collaborative Research: Mechanisms, Modeling and Geochemical Consequences of Electron Flow in Acid Mine Drainage-Induced Sediments

合作研究:酸性矿山排水诱发沉积物中电子流的机制、模拟和地球化学后果

基本信息

  • 批准号:
    1347069
  • 负责人:
  • 金额:
    $ 25.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The transfer of material and energetic substrates for microbial metabolism has historically been viewed as strongly dependent on the diffusion of chemical species within the physicochemical milieu in which the microbial community is active. Ideas that individual organisms and microbial communities may mediate redox reactions despite spatial separation of energetic substrates have now begun to challenge this view. Microbial communities that are electrically integrated in a network of conductive extracellular structures (e.g. microbial nanowires) and redox-active mineral phases may facilitate and exploit the movement of electrons over scales (mm- to cm-scale) far exceeding those of the individual cells (micrometer to meter-scale), referred to as "far-afield extracellular electron transport (EET)." An important implication of farafield EET is that biogeochemical redox reactions may occur despite the spatial separation of reductant, oxidant, and even individual microorganisms themselves. The work proposed here will use an acid mine drainage (AMD)-impacted system to examine the dynamics of electron flow in a "natural" setting. In several settings, when Fe(II)-rich AMD reaches the terrestrial surface aerobic, acidophilic bacteria oxidize Fe(II) to Fe(III). The Fe(III) (hydr)oxides that result from these microbial activities accumulate as 'iron mounds,' which are composed almost exclusively of Fe(III) phases. It is hypothesized that integrated, conductive networks composed of mineral phases, microbial nanowires, and other conductive cellular material facilitate EET and the transfer of electrons through the iron mound, supporting microbiological oxidation of Fe(II) at depths within the iron mound that could not be sustained simply by diffusion of O2 into the mound. Field-based fine-scale geochemical site characterizations coupled with measurements of geo- and electro-chemical changes and detailed characterizations of electrically conductive microbial structures in laboratory-scale sediment incubations will be used to elucidate the rates, scales, and extents of electron transfer processes mediated by iron mound-associated microbial communities. Multiscale physical modeling of electron transfer processes will be used to support and supplement experimental examinations of electron transfer within this system, and will include modeling of electron flow in simulated microbial nanowires, 'biogeobatteries,' and in larger scale systems like that encountered in an iron mound. Results of this work will enhance understanding of microbially mediated geochemical processes in iron mounds and AMD treatment approaches. A non-profit AMD treatment company will serve as an unfunded collaborator on this project to facilitate knowledge transfer to AMD treatment practitioners. Funds from this project will aid in the interdisciplinary training of a post-doctoral researcher, graduate, and undergraduate students, while facilitating a strong collaboration between a public university (The University of Akron) and private university (The University of Southern California). Graduate and undergraduate students will be recruited from UA's McNair Scholars program. The iron mound field site will also serve as a field classroom for formal courses at UA and a local school district.
微生物代谢的物质和能量基质的转移历来被认为强烈依赖于微生物群落活跃的物理化学环境中化学物质的扩散。尽管能量基质在空间上分离,但个体生物和微生物群落可能介导氧化还原反应的想法现在已经开始挑战这一观点。电整合在导电细胞外结构(例如微生物纳米线)和氧化还原活性矿物相的网络中的微生物群落可以促进和利用电子在远超过单个细胞的尺度(微米到米尺度)的尺度(mm到cm尺度)上的移动,称为“远场细胞外电子传输(EET)”。“远场EET的一个重要含义是,尽管还原剂、氧化剂甚至单个微生物本身在空间上分离,但仍可能发生非地球化学氧化还原反应。这里提出的工作将使用酸性矿井排水(AMD)影响的系统,以检查在“自然”设置的电子流的动态。在几种情况下,当富含Fe(II)的AMD到达陆地表面需氧时,嗜酸细菌将Fe(II)氧化为Fe(III)。由这些微生物活动产生的Fe(III)(hydr)氧化物积累为“铁土丘”,其几乎完全由Fe(III)相组成。据推测,集成的,导电网络组成的矿物相,微生物纳米线,和其他导电细胞材料促进EET和电子通过铁丘,支持微生物氧化的Fe(II)的深度内的铁丘,不能简单地通过扩散到土堆的O2。基于现场的精细尺度地球化学网站的特点加上测量的地质和电化学的变化和详细的表征导电的微生物结构在实验室规模的沉积物孵育将被用来阐明的速率,规模和程度的电子传递过程介导的铁丘相关的微生物群落。 电子转移过程的多尺度物理建模将用于支持和补充该系统内电子转移的实验检查,并将包括模拟微生物纳米线,“生物电池”和更大规模的系统中的电子流的建模,如在铁墩中遇到的。这项工作的结果将加强对微生物介导的地球化学过程的理解,在铁土丘和AMD的治疗方法。一家非营利性的AMD治疗公司将作为该项目的无资金合作者,以促进向AMD治疗从业者的知识转移。来自该项目的资金将有助于博士后研究人员,研究生和本科生的跨学科培训,同时促进公立大学(阿克伦大学)和私立大学(南加州大学)之间的密切合作。研究生和本科生将从UA的麦克奈尔学者计划招募。铁丘现场也将作为一个现场教室,在联合大学和当地学区的正式课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yuri Gorby其他文献

Yuri Gorby的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yuri Gorby', 18)}}的其他基金

2015 Applied and Environmental Microbiology Gordon Research Conference, July 11-17, 2015, Mount Holyoke College, South Hadley, MA
2015 应用与环境微生物学戈登研究会议,2015 年 7 月 11-17 日,曼荷莲学院,马萨诸塞州南哈德利
  • 批准号:
    1541611
  • 财政年份:
    2015
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms, Modeling and Geochemical Consequences of Electron Flow in Acid Mine Drainage-Induced Sediments
合作研究:酸性矿山排水诱发沉积物中电子流的机制、模拟和地球化学后果
  • 批准号:
    1148498
  • 财政年份:
    2012
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328529
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of community coalescence in synthetic microbiomes
合作研究:合成微生物组中群落合并的机制
  • 批准号:
    2328528
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344765
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Determining the role of uranium(V) in the global uranium cycle by characterizing burial mechanisms in marine sinks
合作研究:通过表征海洋汇埋藏机制确定铀(V)在全球铀循环中的作用
  • 批准号:
    2322205
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Referential alarm calling as a window into the mechanisms and evolution of a complex cognitive phenotype
合作研究:参考警报呼叫作为了解复杂认知表型的机制和演化的窗口
  • 批准号:
    2417581
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Continuing Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrating Optimal Function and Compliant Mechanisms for Ubiquitous Lower-Limb Powered Prostheses
合作研究:将优化功能和合规机制整合到无处不在的下肢动力假肢中
  • 批准号:
    2344766
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319096
  • 财政年份:
    2024
  • 资助金额:
    $ 25.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了