SECO Program Solicitation NSF 13-551: Microwave Nearfield Radar Imaging (NRI) Using Digital Breast Tomosynthesis (DBT) for Non-Invasive Breast Cancer Detection.

SECO 计划征集 NSF 13-551:使用数字乳腺断层合成 (DBT) 进行微波近场雷达成像 (NRI) 进行非侵入性乳腺癌检测。

基本信息

  • 批准号:
    1347454
  • 负责人:
  • 金额:
    $ 19.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fixed Amount Award
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-04-15 至 2015-02-10
  • 项目状态:
    已结题

项目摘要

Early, accurate detection of breast cancer has long been a top medical priority. Recent clinicalsuccess using Digital Breast Tomosynthesis (DBT) developed by our Massachusetts General Hospital(MGH) research partners shows reduced false alarms relative to conventional mammography.However, despite DBT?s enhanced detection capability, the 1% radiological contrast betweencancerous tissue and commonly-occurring fibroglandular tissue limits the unequivocal characterizationof diseased tissue. Alternatively, due to the relatively high contrast (10%) between cancerand fibro-glandular tissue, microwave imaging has a strong potential to distinguish diseasedfrom healthy tissue. However, the often highly heterogeneous nature of breast tissue, wherefibroglandular tissue is randomly interspersed in the adipose background, results in disorganizedmicrowave images resulting in degraded image reconstruction.In collaboration with our research partners at Northeastern University?s Gordon Center forSubsurface Sensing and Imaging Systems (Gordon-CenSSIS) ERC, HXI proposes to fuse the DBTX-ray imagery with microwave Nearfield Radar Imagery (NRI), and by building upon the imageextraction techniques developed by ERC platform technology, to significantly improve the canceroustissue detection rate.The proposed activities will help the scientific/medical community to advance the knowledgeand understanding of the effectiveness of microwave NRI method in detecting breast cancer.Our approach is based on the use of high resolution X-ray-based DBT imaging to obtain thespatial organization of heterogeneous breast tissues and on coupling it as prior informationto NRI for 3-D reconstruction. This completely new transformative concept has not been previouslyinvestigated, and it has the potential to overcome the limitations of a single-modality breastcancer imaging technology.This project brings together expertise from multiple disciplines:1) HXI, world experts in radar design, will build the NRI sensor and antenna array;2) CenSSIS will provide its platform technology algorithms to perform the sensing, imagingand feature extraction of biological tissues and conduct phantom experiments; and3) Consultants from the MGH will provide medical expertise.Our approach, using new but validated imaging systems, allows for rapid transition to industrialproduct development. The project furthers the ERC?s strategic plan through the applicationof translational research for commercialization, with appropriate licensing of CenSSIS? IPto HXI. Additionally, the NRI/DBT system has the potential to expand HXI?s portfolio of marketablemicrowave and RF products.The broader impacts of this project are multifaceted, including improving breast cancer detectionrates, minimizing the cost of treatment by reducing the number of false-positive screeningsand preventing patients from going through the anxiety that callback examinations create.Today, mammography allows 10-15% of cancers to go undetected and present themselves withinone year. In the United States approximately 45 million mammograms are performed annuallywith false positive rates of 8-10%. This equates to more than 4 million callback examinationsper year. With the global market growing at a CAGR of 15.4% developing better imaging systemsis a high priority, in terms of women?s health, emotional toll, and medical costs.
乳腺癌的早期、准确检测一直是医疗工作的重中之重。我们的马萨诸塞州综合医院(MGH)研究合作伙伴开发的数字乳腺断层合成摄影(DBT)最近在临床上取得了成功,显示相对于传统乳腺X射线摄影,错误警报减少。由于增强了检测能力,癌组织和常见的纤维腺组织之间1%的放射对比度限制了病变组织的明确特征。另外,由于癌组织和纤维腺组织之间的对比度相对较高(10%),微波成像具有很强的潜力来区分疾病和健康组织。然而,乳腺组织通常具有高度异质性,纤维腺体组织随机散布在脂肪背景中,导致混乱的微波图像,从而导致图像重建质量下降。戈登地下传感和成像系统中心(Gordon-CenSSIS)ERC,HXI提议将DBTX射线图像与微波近场雷达图像(NRI)融合,并通过利用ERC平台技术开发的图像提取技术,大大提高癌症的检出率。建议的活动将有助于科学/医学界,以提高知识和微波NRI方法在检测乳腺癌的有效性的理解。我们的方法是基于使用高分辨率X射线,基于DBT成像,获得异质性乳腺组织的空间组织,并将其作为先验信息耦合到NRI进行三维重建。这一全新的变革性概念此前尚未被研究,它有可能克服单一模态乳腺癌成像技术的局限性。该项目汇集了多个学科的专业知识:1)HXI,世界雷达设计专家,将建立NRI传感器和天线阵列;2)CenSSIS将提供其平台技术算法来执行生物组织的传感,成像和特征提取并进行体模实验;和3)来自MGH的顾问将提供医学专业知识。我们的方法,使用新的但经过验证的成像系统,允许快速过渡到工业产品开发。该项目促进了ERC?的战略计划,通过应用转化研究的商业化,与适当的许可CenSSIS?IPto HXI.此外,NRI/DBT系统有可能扩大HXI?该项目的广泛影响是多方面的,包括提高乳腺癌的检出率,通过减少假阳性筛查的数量来最大限度地降低治疗成本,并防止患者经历再次检查所产生的焦虑。今天,乳房X光检查允许10-15%的癌症在一年内未被发现并出现。在美国,每年大约进行4500万次乳房X光检查,假阳性率为8- 10%。这相当于每年有400多万人参加复试。随着全球市场以15.4%的复合年增长率增长,开发更好的成像系统是一个高度优先事项,在妇女方面?的健康,精神损失和医疗费用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hok Seto其他文献

Hok Seto的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

REU Site: The DUB REU Program for Human-Centered Computing Research
REU 网站:DUB REU 以人为中心的计算研究计划
  • 批准号:
    2348926
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
REU Site: Summer Research Program for Community College and Liberal Arts College Students in Physics and Astronomy
REU 网站:社区学院和文理学院学生物理和天文学夏季研究计划
  • 批准号:
    2349111
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
  • 批准号:
    2349255
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Understanding Teacher Effectiveness and Retention Among Single Subject Math Program Completers in the First Five Years of Teaching
了解教师在教学前五年的效率和单科数学课程完成者的保留率
  • 批准号:
    2345187
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Conference: Early Career Development (CAREER) Program Workshop for STEM Education Research at Minority-Serving Institutions
会议:少数族裔服务机构 STEM 教育研究早期职业发展 (CAREER) 计划研讨会
  • 批准号:
    2400690
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
A cluster randomized controlled trial to evaluate pharmacy-based health promotion program to improve blood pressure control in Bangladesh, India and Pakistan
一项整群随机对照试验,旨在评估孟加拉国、印度和巴基斯坦基于药房的健康促进计划,以改善血压控制
  • 批准号:
    23K24566
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Stanford-Florida Program in Support of LIGO on Coatings and Core Optics
合作研究:斯坦福-佛罗里达计划支持 LIGO 涂层和核心光学器件
  • 批准号:
    2309086
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
Conference: The Polymath Jr Program
会议:小博学者计划
  • 批准号:
    2341670
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Continuing Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
Creating a Grow-Your-Own Program for Recruiting and Supporting Computer Science Teacher Candidates in Rural Georgia
创建一个自己成长的计划,用于招募和支持佐治亚州农村地区的计算机科学教师候选人
  • 批准号:
    2344678
  • 财政年份:
    2024
  • 资助金额:
    $ 19.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了