Dynamic Statistical Models to Improve Long-term Volcanic Hazard Assessments

改善长期火山灾害评估的动态统计模型

基本信息

  • 批准号:
    1347899
  • 负责人:
  • 金额:
    $ 22.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Long-term volcanic hazard assessments aim to forecast the timing and nature of future, potentially dangerous, volcanic activity. Such assessments need to account for the dynamic nature of volcanic systems, such as migration of eruptive vents, variations of eruption frequency, and magma focusing in various tectonic settings. This project brings together a multidisciplinary team to improve our understanding of how volcanic systems evolve in space and time due to complex magmatic processes within the Earth's mantle and crust that cannot be directly observed. In this project, researchers will concentrate on the distributed volcanic system around Lassen Peak, California, as a test for statistical models of spatial intensity (vents per unit area), volume intensity (erupted volume per unit area), volume-flux (erupted volume per unit of time and area) and recurrence rate models (number of eruptive events per unit of time). They plan to enhance these models by integrating data that provide clues to subsurface magmatic processes, such as geophysical, geochemical and tectonic data. They will make new age determinations of past volcanic eruptions and assess geochemical trends in the Lassen volcanic system. Together, these data and models should provide more accurate tools for assessing the potential impacts of future volcanic activity. Researchers then plan to generalize this model to consider diverse volcanic systems in the western United States and their potential hazards.Specifically, existing data on vent location and erupted volumes will be used to develop nonparametric kernel density statistical models of the spatial intensity and volume intensity at Lassen and for five other well-studied volcanic systems in the western U.S.A. These statistical models cast the discrete processes of dike injection, sill development, and eruption as continuous density functions. Uncertainties in these statistical models (e.g., uncertainty due to vent burial; uncertainty in geochronology) will be tested by gathering additional data in the Caribou volcanic field, east of Lassen. There, new radiometric age determinations and additional volume data will be collected to test statistical models of field growth using stochastic recurrence rate and lava flow inundation models that we have previously developed. Using radiometric age determinations of vents and erupted units, recurrence rate of volcanism and associated uncertainty will be calculated using a Monte Carlo approach. Stochastic solutions to differential equations governing magma production and transport will be implemented to model subsurface processes of magma ascent. Using this continuous formulation, additional complexities that influence magma migration such as complex sources, magma generation, magma rheology, tectonic stresses, and/or anisotropic/heterogeneous behavior of the porous medium, can be simply implemented by varying the choice of source and conductivity parameters. In this way physical processes that may give rise to heterogeneous flux in numerical models can be tested and be related to observed vent distributions and volume flux at the surface, creating stronger links between statistical models of volcanism and observed geophysical, tectonic, and geochemical data.
长期火山灾害评估的目的是预测未来潜在危险的火山活动的时间和性质。这种评估需要考虑到火山系统的动态性质,例如喷发口的迁移、喷发频率的变化以及岩浆在不同构造环境中的聚集。该项目汇集了一个多学科团队,以提高我们对火山系统如何在空间和时间上演变的理解,这是由于地球地幔和地壳内复杂的岩浆过程无法直接观察到。在该项目中,研究人员将集中研究加州拉森峰周围的分布式火山系统,作为空间强度(每单位面积的喷口)、体积强度(每单位面积的喷发体积)、体积流量(每单位时间和面积的喷发体积)和复发率模型(每单位时间的喷发事件数量)的统计模型的测试。他们计划通过整合为地下岩浆过程提供线索的数据,如地球物理,地球化学和构造数据,来增强这些模型。他们将对过去的火山喷发进行新的年龄测定,并评估拉森火山系统的地球化学趋势。这些数据和模型应能为评估未来火山活动的潜在影响提供更准确的工具。然后,研究人员计划推广这一模型,以考虑美国西部不同的火山系统及其潜在的危险。关于喷口位置和喷发体积的现有数据将用于开发拉森和其他五口井的空间强度和体积强度的非参数核密度统计模型,这些统计模型将岩脉注入、岩床发育和喷发的离散过程作为连续的密度函数。在这些统计模型中不受约束(例如,将通过在拉森以东的卡里布火山区收集更多数据来检验火山喷发的不确定性(火山口埋藏造成的不确定性;地质年代学的不确定性)。在那里,将收集新的放射性年龄测定和额外的体积数据,以测试现场增长的统计模型,使用随机复发率和熔岩流淹没模型,我们以前开发的。将使用蒙特卡罗方法,利用喷口和喷发单元的放射性年龄测定,计算火山活动的复发率和相关的不确定性。随机解决方案的微分方程岩浆生产和运输将实施模拟地下过程的岩浆上升。使用这种连续的配方,额外的复杂性,影响岩浆迁移,如复杂的来源,岩浆生成,岩浆流变学,构造应力,和/或各向异性/非均质的多孔介质的行为,可以简单地实现通过改变源和电导率参数的选择。通过这种方式,可以测试可能引起数值模型中的非均质通量的物理过程,并将其与观测到的喷口分布和地表体积通量联系起来,从而在火山活动的统计模型与观测到的地球物理、构造和地球化学数据之间建立更强的联系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aurelie Germa其他文献

Aurelie Germa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aurelie Germa', 18)}}的其他基金

Acquisition of a 4K high accuracy digital microscope
购置4K高精度数码显微镜
  • 批准号:
    2040066
  • 财政年份:
    2021
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant

相似海外基金

Understanding hierarchical statistical learning of sequential perception with dynamic multiple timescale models
使用动态多时间尺度模型理解顺序感知的分层统计学习
  • 批准号:
    21KK0181
  • 财政年份:
    2021
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
  • 批准号:
    RGPIN-2017-04339
  • 财政年份:
    2021
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
  • 批准号:
    RGPIN-2017-04339
  • 财政年份:
    2020
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
  • 批准号:
    RGPIN-2017-04339
  • 财政年份:
    2019
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
  • 批准号:
    RGPIN-2017-04339
  • 财政年份:
    2018
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Models for Dynamic Networks with Endogenous Vertex Migration
具有内生顶点迁移的动态网络的统计模型
  • 批准号:
    1826589
  • 财政年份:
    2018
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Continuing Grant
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
  • 批准号:
    RGPIN-2017-04339
  • 财政年份:
    2017
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Discovery Grants Program - Individual
Flexible statistical models for dynamic prediction in survival analysis with time-varying prognostic factors
用于随时间变化的预后因素进行生存分析的动态预测的灵活统计模型
  • 批准号:
    RGPIN-2016-04424
  • 财政年份:
    2016
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Discovery Grants Program - Individual
Dynamic Models for Risk Management: Big Data, Statistical Inference, and Decision Making
风险管理动态模型:大数据、统计推断和决策
  • 批准号:
    RGPIN-2015-06558
  • 财政年份:
    2015
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Discovery Grants Program - Individual
SBE: Small: Statistical Models and Methods for Dynamic Complex Networks
SBE:小型:动态复杂网络的统计模型和方法
  • 批准号:
    1523785
  • 财政年份:
    2015
  • 资助金额:
    $ 22.91万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了