CAREER: Extending and unifying modern homological invariants in low dimensional topology

职业:扩展和统一低维拓扑中的现代同调不变量

基本信息

  • 批准号:
    1350037
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The project will concentrate on two modern homological knot invariants: Khovanov homology and knot Floer homology. Both invariants associate chain complexes to knots whose chain homotopy types (and consequently, homology groups) are knot invariants. This project has two major research goals. The first goal is to extend various aspects of these homological invariants to stable homotopy types, i.e., construct new knot invariant topological spaces (well-defined up to stable homotopy equivalences) whose homology groups are the existing invariants. This will produce higher structures on the homological invariants which will be useful for studying certain geometric properties of knots, such as their four-ball genus. The second goal of this project is to study the relationship between the homological invariants. The project seeks to find new spectral sequences, and combinatorial reformulations of the existing spectral sequences, from the Khovanov homology invariants to the knot Floer homology invariants. This will lead to a better understanding of why these two invariants coming from very different origins share so many similarities.Topology is the branch of mathematics that studies shapes of spaces; and low dimensional topology concentrates on spaces up to dimension four. Knot theory is an important sub-field of low dimensional topology where one studies one-dimensional objects inside three-dimensional spaces, for example, knotted pieces of strings inside the (three-dimensional Euclidean) space that we live in. In addition to being an extremely valuable tool in low dimensional topology, knot theory has also proven to be useful in real world applications: from analysing knotting in DNA to studying mixing in liquids, and from estimating energies of orbits inside a magnetic field to creating new data encryption schemes. A fundamental problem in knot theory is the knot isotopy problem: to determine if a given knot can transform into another one without tearing or crossing itself (such a transformation is called a knot isotopy). Knot invariants are mathematical objects, such as numbers or groups, that one associates to knots, and which remain unchanged during such a knot isotopy. Therefore, knot invariants are used extensively in the knot isotopy problem: if one finds some knot invariant that takes different values on the two given knots, then one concludes that the two knots are not isotopic. The current project is based on knot theory, and it seeks to study properties of certain previously known knot invariants, and to extend them to construct new knot invariants. The project will lead to dispersion of mathematical knowledge, particularly in the area of low-dimensional topology, via a variety of means. This project will fund undergraduate students for summer research, week-long workshops on low-dimensional topology, and a wiki-based website on knot theory.
该项目将集中在两个现代同调结不变量:Khovanov同调和结Floer同调。这两个不变量都将链复形与其链同伦类型(因此,同调群)是结不变量的结相关联。该项目有两个主要的研究目标。第一个目标是将这些同调不变量的各个方面扩展到稳定的同伦类型,即,构造新的纽结不变拓扑空间(定义良好的稳定同伦等价),其同调群是现有的不变量。这将产生关于同调不变量的更高结构,这将有助于研究结的某些几何性质,例如它们的四球亏格。本项目的第二个目标是研究同调不变量之间的关系。该项目旨在寻找新的谱序列,以及现有谱序列的组合重构,从Khovanov同源不变量到结Floer同源不变量。这将导致更好地理解为什么这两个不变量来自非常不同的起源有这么多的相似之处。拓扑学是数学的分支,研究空间的形状;低维拓扑学集中在空间到四维。纽结理论是低维拓扑学的一个重要子领域,人们研究三维空间内的一维物体,例如,我们生活的(三维欧几里得)空间内打结的弦。除了在低维拓扑学中是一个非常有价值的工具外,结理论在真实的世界中也被证明是有用的:从分析DNA中的打结到研究液体中的混合,从估计磁场内轨道的能量到创建新的数据加密方案。纽结理论中的一个基本问题是纽结合痕问题:确定一个给定的纽结是否可以在不撕裂或交叉自身的情况下变换为另一个纽结(这样的变换称为纽结合痕)。纽结不变量是数学对象,如数或群,它与纽结相关联,并且在这样的纽结合痕中保持不变。因此,纽结不变量在纽结同伦问题中被广泛使用:如果一个人发现一些纽结不变量在两个给定的纽结上取不同的值,那么他就得出结论,这两个纽结不是同伦的。目前的项目是基于纽结理论,它试图研究某些以前已知的纽结不变量的属性,并将其扩展到构建新的纽结不变量。该项目将通过各种手段传播数学知识,特别是在低维拓扑学领域。该项目将资助本科生进行夏季研究,为期一周的低维拓扑研讨会,以及基于维基的纽结理论网站。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sucharit Sarkar其他文献

A Steenrod square on Khovanov homology
Khovanov 同调上的 Steenrod 平方
  • DOI:
    10.1112/jtopol/jtu005
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Robert Lipshitz;Sucharit Sarkar
  • 通讯作者:
    Sucharit Sarkar
A combinatorial description of knot Floer homology
结Floer同源性的组合描述
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ciprian Manolescu;P. Ozsváth;Sucharit Sarkar
  • 通讯作者:
    Sucharit Sarkar
Moving basepoints and the induced automorphisms of link Floer homology
移动基点和链接弗洛尔同调的诱导自同构
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sucharit Sarkar
  • 通讯作者:
    Sucharit Sarkar
Spectra in Khovanov and knot Floer theories
霍瓦诺夫谱和结弗洛尔理论
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marco Marengon;Sucharit Sarkar;András Stipsicz
  • 通讯作者:
    András Stipsicz
Topics in Heegaard Floer homology
Heegaard Floer 同源性主题
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sucharit Sarkar
  • 通讯作者:
    Sucharit Sarkar

Sucharit Sarkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sucharit Sarkar', 18)}}的其他基金

RTG: Geometry and Topology at UCLA
RTG:加州大学洛杉矶分校的几何和拓扑
  • 批准号:
    2136090
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Extensions of Modern Homological Invariants in Low Dimensional Topology
低维拓扑中现代同调不变量的推广
  • 批准号:
    1905717
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Extending and unifying modern homological invariants in low dimensional topology
职业:扩展和统一低维拓扑中的现代同调不变量
  • 批准号:
    1643401
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似海外基金

XRtists: Artists Extending Realities
XRtists:延伸现实的艺术家
  • 批准号:
    AH/Z505407/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
HSI Implementation and Evaluation Project: Scaling and Extending Exploratory Reading Groups to Strengthen Computing Pathways
HSI 实施和评估项目:扩大和扩展探索性阅读小组以加强计算途径
  • 批准号:
    2414332
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Extending the Florida Pathways 2 Success Partnership to Increase Engagement, Retention, and Success of Low-income Undergraduate and Graduate Students
扩展佛罗里达途径 2 成功合作伙伴关系,以提高低收入本科生和研究生的参与度、保留率和成功率
  • 批准号:
    2322545
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Extending the utility and durability of antifungal agents via innovative treatment regimens that minimise drug resistance
通过创新治疗方案最大限度地减少耐药性,延长抗真菌药物的效用和持久性
  • 批准号:
    MR/Y002164/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Extending Remaining Useful Life of Second-life Battery Energy Systems
延长二次电池能源系统的剩余使用寿命
  • 批准号:
    DP240102646
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Discovery Projects
OneSpray - Extending the shelf life of fresh produce through novel antimicrobial coating technology
OneSpray - 通过新型抗菌涂层技术延长新鲜农产品的保质期
  • 批准号:
    10075060
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative R&D
Extending Mironid's PDE4 activator programme: Hyperparathyroidism as a second clinical indication
扩展 Mironid 的 PDE4 激活剂计划:甲状旁腺功能亢进作为第二个临床适应症
  • 批准号:
    10038156
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Collaborative R&D
Extending Lifetime of Existing RC Structures Using Cementless FRG: Clarification of Mechanical Performance of FRG-RC Composite Members
使用无水泥 FRG 延长现有 RC 结构的使用寿命:澄清 FRG-RC 复合构件的机械性能
  • 批准号:
    23H00200
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了