CAREER: Sodium Spinor Condensates and Their Applications in Quantum Information Science

职业:钠自旋凝聚体及其在量子信息科学中的应用

基本信息

  • 批准号:
    1352168
  • 负责人:
  • 金额:
    $ 57.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

This CAREER award supports the study and application of massive entanglement and spin-squeezing in quantum information science, in part by implementing the first precise magnetometer with micron spatial resolution and femto-tesla field sensitivity, as well as the development of an efficient scheme to detect and characterize the entanglement. This work is targeted towards applying a sodium spinor Bose-Einstein condensate (BEC) to generate massive entanglement in the vicinity of Dicke states through adiabatic evolution across a quantum phase transition, and to create spin-squeezing via collectively coupling atoms to a light field with a quantum non-demolition measurement. The goals of this research are both of fundamental interest for advancing our understanding of quantum physics, and of technological significance. Its interdisciplinary character envelops a broad spectrum of fields in physics and quantum information theory. Magnetometers, devices constructed to measure the strength and spatial distribution of magnetic fields, are among the most essential and versatile measurement tools available. They are used in a wide variety of applications in all areas of science and industry, such as searching for mineral resources, biomedical imaging for early detection and diagnostics, and the exploration of environmental hazards. As with all measurement techniques, the goals of a magnetometry measurement are to reach a sensitivity that will allow the detection of smaller and smaller quantities and a resolution that will allow pinpointing location to smaller and smaller sizes. The research supported under this CAREER award will incorporate ultracold BECs into proven optical measurement methods for atom magnetometry, which relies on atomic signals for detection, that were previously based on techniques using hot atomic vapors. The new cold atom approach will make it possible to develop magnetometers with enhanced magnetic field sensitivity and spatial resolution. Beyond the important research goals, this CAREER award will provide excellent opportunities to introduce students to modern developments in quantum physics, to involve them in research projects, and to prepare them for a career in science and technology. Two new laboratory courses in physics will be developed to better prepare the students for advanced research. Active efforts will be undertaken to broaden the participation of under-represented groups in this project by involving Native American students, women in physics, and potential ?first-generation? college students in research and educational activities. This CAREER award will enhance the infrastructure for science education in the region and encourage more talented students to pursue a career in science.
该CAREER奖支持量子信息科学中大规模纠缠和自旋压缩的研究和应用,部分是通过实施第一个具有微米空间分辨率和毫微微特斯拉场灵敏度的精密磁力计,以及开发一种有效的方案来检测和表征纠缠。利用钠旋量玻色-爱因斯坦凝聚(BEC),通过量子相变的绝热演化在迪凯态附近产生大质量纠缠,并通过量子非破坏测量将原子集体耦合到光场产生自旋压缩.这项研究的目标对于推进我们对量子物理的理解和技术意义都具有根本意义。它的跨学科性质涵盖了物理学和量子信息理论的广泛领域。磁力计是用来测量磁场强度和空间分布的设备,是最基本和最通用的测量工具之一。 它们在科学和工业的所有领域都有广泛的应用,例如寻找矿产资源,用于早期检测和诊断的生物医学成像以及环境危害的探索。 与所有测量技术一样,磁力测量的目标是达到允许检测越来越小的量的灵敏度和允许将位置精确定位到越来越小的尺寸的分辨率。 该CAREER奖支持的研究将把超冷BEC纳入原子磁力测量的成熟光学测量方法中,该方法依赖于原子信号进行检测,而以前是基于使用热原子蒸气的技术。 新的冷原子方法将使研制具有更高磁场灵敏度和空间分辨率的磁力计成为可能。除了重要的研究目标,这个职业奖将提供极好的机会,向学生介绍量子物理学的现代发展,让他们参与研究项目,并为他们在科学和技术的职业生涯做好准备。将开发两门新的物理实验室课程,以更好地为学生进行高级研究做好准备。将作出积极努力,通过让美洲土著学生、物理学领域的妇女和有潜力的妇女参与这一项目,扩大代表性不足的群体的参与。第一代吗大学生参与科研和教育活动。该职业奖将加强该地区科学教育的基础设施,并鼓励更多有才华的学生从事科学事业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingmei Liu其他文献

Detecting topological phase transitions in a double kicked quantum rotor
检测双踢量子转子中的拓扑相变
  • DOI:
    10.1103/physreva.106.043318
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Nikolai Bolik;C. Groiseau;J. Clark;G. Summy;Yingmei Liu;S. Wimberger
  • 通讯作者:
    S. Wimberger
Engineering dynamical phase diagrams with driven lattices in spinor gases
旋量气体中驱动晶格的工程动力学相图
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. O. Austin;Z. N. Hardesty;Qingze Guan;C. Binegar;Doerte Blume;R. J. Lewis;Yingmei Liu
  • 通讯作者:
    Yingmei Liu
Ventricular tachycardia in a disseminated MDR-TB patient: a case report and brief review of literature
  • DOI:
    10.1007/s11684-014-0321-7
  • 发表时间:
    2014-03-14
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Hui Li;Ran Li;Jiuxin Qu;Xiaomin Yu;Zhixin Cao;Yingmei Liu;Bin Cao
  • 通讯作者:
    Bin Cao
Temperature dependence of exciton Auger decay process in cuprous oxide
氧化亚铜中激子俄歇衰变过程的温度依赖性
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingmei Liu;D. Snoke
  • 通讯作者:
    D. Snoke
EXCITONS AT HIGH DENSITY IN CUPROUS OXIDE AND COUPLED QUANTUM WELLS
氧化亚铜和耦合量子阱中高密度激子
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingmei Liu
  • 通讯作者:
    Yingmei Liu

Yingmei Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingmei Liu', 18)}}的其他基金

Nonequilibrium Dynamics and Site-Resolved Imaging in a Three-Dimensional Spinor Bose-Hubbard Model Quantum Simulator
三维旋量玻色-哈伯德模型量子模拟器中的非平衡动力学和位点分辨成像
  • 批准号:
    2207777
  • 财政年份:
    2022
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Continuing Grant
Novel Quantum Phase Transitions and Non-Equilibrium Dynamics in Lattice-Confined Spinor Condensates
晶格限制旋量凝聚中的新型量子相变和非平衡动力学
  • 批准号:
    1912575
  • 财政年份:
    2019
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Continuing Grant

相似海外基金

Electrolyte design for high-performance, sustainable sodium batteries
高性能、可持续钠电池的电解质设计
  • 批准号:
    DE240100480
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Discovery Early Career Researcher Award
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
  • 批准号:
    2331724
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Cooperative Agreement
CAREER: Tyrosine Phosphorylation and Kinase Activity as a Regulator of Sodium-Glucose Transporters
职业:酪氨酸磷酸化和激酶活性作为钠-葡萄糖转运蛋白的调节剂
  • 批准号:
    2340201
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325464
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Continuing Grant
Room Temperature High Energy Density Sodium-Sulfur Batteries
室温高能量密度钠硫电池
  • 批准号:
    DP240101548
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Discovery Projects
Towards innovative and affordable sodium- and zinc-based energy storage systems based on more sustainable and locally-sourced materials (eNargiZinc)
开发基于更可持续和本地采购的材料的创新且经济实惠的钠基和锌基储能系统 (eNargiZinc)
  • 批准号:
    EP/Y03127X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Research Grant
Electrolyte and interface engineering of solid-state sodium batteries
固态钠电池电解质及界面工程
  • 批准号:
    DP240102926
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Discovery Projects
Repurposing Sodium Cromoglycate For Lymphangioleiomyomatosis (LAM): An Open Label, Proof Of Concept And Feasibility Study
重新利用色甘酸钠治疗淋巴管平滑肌瘤病 (LAM):开放标签、概念验证和可行性研究
  • 批准号:
    MR/Y008618/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Research Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
  • 批准号:
    2325463
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Continuing Grant
All-Solid-state Sodium-ion Batteries for Renewable Energy Industry
用于可再生能源行业的全固态钠离子电池
  • 批准号:
    DP240102176
  • 财政年份:
    2024
  • 资助金额:
    $ 57.18万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了