EAGER: Simultaneously Controlling Multi-Scale Material Structures Based on Fluid Layering With Self-Assembly and Eutectic Growth

EAGER:基于自组装和共晶生长的流体分层同时控制多尺度材料结构

基本信息

  • 批准号:
    1353156
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-02-29
  • 项目状态:
    已结题

项目摘要

This EArly-concept Grant for Exploratory Research (EAGER) project is to develop high performance bulk thermoelectric materials by manipulating their structures at the meso-, micro-, and nano-scale. Achieving a broad range of length scales in the structure of thermoelectric materials is expected to maximize phonon scattering, which will in turn maximize the performance of thermoelectric materials due to the depletion of phononic (or lattice) thermal conduction. Here, the novel idea is to utilize continuum-level fluid mechanics (layering technique) for designing meso/micro-scale structures while creating micro/nano-scale structures with self-assembly and eutectic growth. Through meso-/micro-scale layering and structuring with liquid phase precursors, the size and distribution of nanoparticle inoculants will be manipulated to control the heterogeneous nucleation and solid phase formation at micro-/nano-scales. This new out-of-the-box but high-risk approach integrating fluid mechanics into materials science/engineering will provide new insight and research direction. Thermoelectric energy conversion systems offer an excellent strategy for improving sustainability of our electric power base by scavenging waste heat from various power consuming systems including automobiles and power plants or for providing effective compact cooling for computers and electronic devices with robustness and silence. The research will provide rational and novel methodologies of improving their efficiency by modifying material structures. In addition, research outcomes include crucial knowledge for fully utilizing nanoparticles by solving one of the major hurdles, nanoparticle aggregation. This new approach combining continuum level fluid mechanics and controlling structures down to nanoscale related to material science/engineering may bring subsequent research related to rational design of multi-scale structured materials. The research also include training of Ph.D students with experience in interdisciplinary collaborative research; broadening participation of undergraduate students belonging to underrepresented groups through the NSF-funded Louis Stokes Alliance for Minority Participation at Texas A&M University and the Center for Enhancement of Engineering Diversity at Virgina Tech; and integrating nanoscale thermal transport phenomena into undergraduate/graduate courses.
这个探索性研究(EAGER)项目的早期概念资助是通过在中、微和纳米尺度上操纵其结构来开发高性能的大块热电材料。在热电材料的结构中实现广泛的长度尺度有望最大限度地提高声子散射,这反过来又将最大限度地提高热电材料的性能,因为声子(或晶格)热传导的损耗。在这里,新颖的想法是利用连续级流体力学(分层技术)来设计中/微尺度结构,同时创建具有自组装和共晶生长的微/纳米尺度结构。通过中/微尺度的液相前驱体分层和结构,控制纳米颗粒孕育剂的尺寸和分布,控制微/纳米尺度的非均相成核和固相形成。这种将流体力学与材料科学/工程相结合的新颖但高风险的方法将提供新的见解和研究方向。热电能量转换系统通过清除来自各种电力消耗系统(包括汽车和发电厂)的废热,为提高我们电力基础的可持续性提供了一种极好的策略,或者为计算机和电子设备提供有效的紧凑冷却,具有坚固性和静音性。该研究将为通过改变材料结构来提高其效率提供合理和新颖的方法。此外,研究成果还包括通过解决纳米颗粒聚集这一主要障碍来充分利用纳米颗粒的关键知识。这种将连续流体力学与材料科学/工程相关的纳米级控制结构相结合的新方法,可能会带来与多尺度结构材料合理设计相关的后续研究。该研究还包括培养具有跨学科合作研究经验的博士生;通过美国国家科学基金会资助的德克萨斯农工大学路易斯·斯托克斯少数民族参与联盟和弗吉尼亚理工大学工程多样性增强中心,扩大代表性不足群体的本科生的参与;并将纳米级热输运现象整合到本科/研究生课程中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Choongho Yu其他文献

Facilitating ZnO nanostructure growths by making seeds for self-catalytic reactions
通过制备自催化反应种子促进 ZnO 纳米结构的生长
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Yin;Choongho Yu
  • 通讯作者:
    Choongho Yu
Harnessing anisotropy of phase change composites for taming thermal runaway and fast charging of lithium-ion batteries
利用相变复合材料的各向异性来控制锂离子电池的热失控和实现快速充电
  • DOI:
    10.1016/j.apenergy.2025.125802
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    11.000
  • 作者:
    Anirban Chakraborty;Jooyoung Lee;Choongho Yu
  • 通讯作者:
    Choongho Yu
Integration of metal-oxide nanobelts with microsystems for sensor applications
金属氧化物纳米带与传感器应用微系统的集成
  • DOI:
    10.1117/12.570971
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Choongho Yu;Qing Hao;Li Shi;X. Kong;Zhong Lin Wang
  • 通讯作者:
    Zhong Lin Wang
Efficient hydrogen production from low-conductivity high-strength wastewater without buffer addition using compact electrode assemblies in membraneless microbial electrolysis cells
在无膜微生物电解池中,使用紧凑电极组件,无需添加缓冲剂,从低电导率高强度废水中高效制氢
  • DOI:
    10.1016/j.cej.2025.165062
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    13.200
  • 作者:
    Luguang Wang;Kevin Linowski;M.D. Zahidul Islam;Hayden Harrison;Choongho Yu;Hong Liu
  • 通讯作者:
    Hong Liu
Special issue on thermoelectric properties of nanostructured materials
纳米结构材料热电性能特刊

Choongho Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Choongho Yu', 18)}}的其他基金

Thermally Chargeable Supercapacitor: Utilizing Thermally-Driven Ion Transport
热充电超级电容器:利用热驱动离子传输
  • 批准号:
    1805963
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
PFI:AIR-TT: One-step and Continuous Manufacturing of Sponge-like Nanostructured Bulks for High Energy Density and Low Cost Batteries
PFI:AIR-TT:用于高能量密度和低成本电池的海绵状纳米结构体的一步连续制造
  • 批准号:
    1701200
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
I-Corps: Batteries Enabled by Novel Nanostructured Scaffold Electrodes
I-Corps:新型纳米结构支架电极支持的电池
  • 批准号:
    1655429
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Building Selective Pathways for Electrons and Phonons in Nanocomposites
在纳米复合材料中构建电子和声子的选择性途径
  • 批准号:
    1030958
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Enhancement of thermoelectric performance by synergistic effects from multiple dopings in complex oxides
通过复合氧化物中多种掺杂的协同效应增强热电性能
  • 批准号:
    0854467
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

RADAR Sensing for Human Activity Monitoring of Daily Living Simultaneously in Multiple Subjects
雷达感测用于同时监测多个对象的日常生活活动
  • 批准号:
    EP/W037076/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Research Grant
Semiconductor interface engineering that simultaneously realizes bond formation and functionalization
同时实现键形成和功能化的半导体界面工程
  • 批准号:
    23K03942
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Target Insertion Amplification and Sequence (TIAS): A novel targeted sequencing technology that performs rapid target enrichment and next generation sequencing sample preparation simultaneously
靶标插入扩增和测序(TIAS):一种新颖的靶向测序技术,可同时进行快速靶标富集和下一代测序样品制备
  • 批准号:
    10758909
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Development of a method to simultaneously obtain cerebral blood flow information and progression of cerebral white matter lesions using head MR angiography.
开发一种使用头部磁共振血管造影同时获取脑血流信息和脑白质病变进展的方法。
  • 批准号:
    23K14839
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
I-Corps: Energy conservation network software that simultaneously audits, monitors, and manages energy use in buildings in real-time
I-Corps:节能网络软件,可同时实时审核、监控和管理建筑物的能源使用情况
  • 批准号:
    2227513
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Study on adaptive structuring of large lightweight space antennas simultaneously considering radio wave characteristics
同时考虑电波特性的大型轻量化空间天线自适应结构研究
  • 批准号:
    22K04535
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
An ultra-low-input RNase footprinting assay to quantify cytosolic and mitochondrial translation simultaneously
超低输入 RNase 足迹分析可同时量化胞质和线粒体翻译
  • 批准号:
    10344388
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
The SIP Study: Simultaneously Implementing Pathways for Improving Asthma, Pneumonia, and Bronchiolitis Care for Hospitalized Children
SIP 研究:同时实施改善住院儿童哮喘、肺炎和细支气管炎护理的途径
  • 批准号:
    10425505
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
Combination ribonucleic acid nanotechnologies to simultaneously study the multitude of mechanistic pathways found in complex diseases
组合核糖核酸纳米技术可同时研究复杂疾病中发现的多种机制途径
  • 批准号:
    RGPIN-2021-03421
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Grants Program - Individual
Development of microscopy techniques to simultaneously visualize the dynamics of the structure and local physical properties of a single protein
开发显微镜技术以同时可视化单个蛋白质的结构动态和局部物理特性
  • 批准号:
    22K18943
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了