EAGER: Diverse M-Best Predictions from Probabilistic Models
EAGER:概率模型的多样化 M-Best 预测
基本信息
- 批准号:1353694
- 负责人:
- 金额:$ 18.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computer Vision systems must deal with significant levels of ambiguity - from inter- and intra-object occlusion and varying appearance, lighting, and pose. Probabilistic models provide a principled framework for dealing with uncertainty and for converting evidence into a posteriori belief about the world. Typically, a vision system uses this belief to predict the "most likely" or maximum a-posteriori hypothesis. Unfortunately, our current models are inaccurate and this single-best hypothesis is often incorrect. This project explores a novel way to allow vision systems to hedge against uncertainty by producing multiple plausible hypotheses. Specifically, this project develops techniques for finding a diverse set of high-probability solutions from probabilistic models. The project focuses on (a) interactive object cutout (where multiple segmentations are shown to the user to expedite convergence to an acceptable result); (b) semantic segmentation (where multiple plausible scene labelings are propagated to subsequent stages of a cascade for higher-order processing); (c) person/object tracking (where multiple localization hypotheses on each frame reduce the search space of a sequence tracker). This project is producing new scientific knowledge in the context of probabilistic reasoning and advancing the state of art in computer vision. The techniques developed are useful for other AI domains such as Speech and Natural Language Processing. The PI and his students are broadly disseminating produced work by organizing workshops, tutorials, and journal special issues, and publicly sharing code and results. The project is engaging undergraduate students and women in computer science research.
计算机视觉系统必须处理大量的模糊性--从对象间和对象内的遮挡,以及外观、照明和姿势的变化。概率模型为处理不确定性和将证据转化为对世界的后验信念提供了一个原则性的框架。通常,视觉系统使用这种信念来预测“最有可能的”或最大后验假设。不幸的是,我们目前的模型是不准确的,这种单一最佳假设往往是不正确的。这个项目探索了一种新的方法,允许视觉系统通过产生多个看似合理的假设来对冲不确定性。具体地说,这个项目开发了从概率模型中找到一组不同的高概率解决方案的技术。该项目的重点是(A)交互式对象切割(其中向用户显示多个分割以加速收敛到可接受的结果);(B)语义分割(其中多个可信的场景标签被传播到级联的后续阶段以进行更高级别的处理);(C)人/对象跟踪(其中每帧上的多个定位假设减少了序列跟踪器的搜索空间)。这个项目在概率推理的背景下产生了新的科学知识,并推动了计算机视觉的最新发展。所开发的技术对语音和自然语言处理等其他人工智能领域也很有用。PI和他的学生正在通过组织研讨会、教程和期刊特刊以及公开分享代码和结果来广泛传播成果。该项目正在吸引本科生和女性参与计算机科学研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dhruv Batra其他文献
Album Story 1 Description for Images in Isolation & in Sequences Re-telling Story 1 Caption in Sequence Storytelling Story 2 Story 3 Re-telling Preferred Photo Sequence Story 4 Story
专辑故事 1 隔离图像说明
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Ting;Francis Ferraro;N. Mostafazadeh;Ishan Misra;Aishwarya Agrawal;Jacob Devlin;Ross B. Girshick;Xiaodong He;Pushmeet Kohli;Dhruv Batra;C. L. Zitnick;Devi Parikh;Lucy Vanderwende;Michel Galley;Margaret Mitchell - 通讯作者:
Margaret Mitchell
Habitat Sim Generic Dataset Support Habitat API Habitat Platform
Habitat Sim 通用数据集支持 Habitat API Habitat 平台
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
M. Savva;Abhishek Kadian;Oleksandr Maksymets;Yili Zhao;Erik Wijmans;Bhavana Jain;Julian Straub;Jia Liu;V. Koltun;Jitendra Malik;Devi Parikh;Dhruv Batra - 通讯作者:
Dhruv Batra
Language is Strong, Vision is Not: A Diagnostic Study of the Limitations of the Embodied Question Answering Task
语言很强大,视觉则不然:对具身问答任务局限性的诊断性研究
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. Anand;Eugene Belilovsky;Kyle Kastner;Dhruv Batra;Aaron Gokaslan;Aniruddha Kembhavi - 通讯作者:
Aniruddha Kembhavi
Visual Curiosity: Learning to Ask Questions to Learn Visual Recognition
视觉好奇心:学习提出问题来学习视觉识别
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Jianwei Yang;Jiasen Lu;Stefan Lee;Dhruv Batra;Devi Parikh - 通讯作者:
Devi Parikh
Empirical Minimum Bayes Risk Prediction: How to Extract an Extra Few % Performance from Vision Models with Just Three More Parameters
经验%20最小%20贝叶斯%20风险%20预测:%20如何%20到%20提取%20an%20额外%20很少%20%%20性能%20来自%20愿景%20模型%20与%20正义%20三个%20更多%20参数
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Vittal Premachandran;Daniel Tarlow;Dhruv Batra - 通讯作者:
Dhruv Batra
Dhruv Batra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dhruv Batra', 18)}}的其他基金
CAREER: Holistic Scene Understanding with Multiple Hypotheses from Vision Modules
职业:通过视觉模块进行多种假设的整体场景理解
- 批准号:
1737419 - 财政年份:2017
- 资助金额:
$ 18.44万 - 项目类别:
Continuing Grant
Group Travel Grant for the Doctoral Consortium at the International Conference on Computer Vision (ICCV) 2015; Dec 11 - 18, 2015; Santiago, Chile
为 2015 年国际计算机视觉会议 (ICCV) 博士联盟提供团体旅行资助;
- 批准号:
1542337 - 财政年份:2015
- 资助金额:
$ 18.44万 - 项目类别:
Standard Grant
CAREER: Holistic Scene Understanding with Multiple Hypotheses from Vision Modules
职业:通过视觉模块进行多种假设的整体场景理解
- 批准号:
1350553 - 财政年份:2014
- 资助金额:
$ 18.44万 - 项目类别:
Continuing Grant
相似海外基金
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
- 批准号:
10097846 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Collaborative R&D
Transforming museum industry to cryopreserve Australia’s diverse wildlife
改造博物馆行业以冷冻保存澳大利亚多样化的野生动物
- 批准号:
LP230100359 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Linkage Projects
Digitally-Integrated Smart Sensing of Diverse Airborne Grass Pollen Sources
多种空气传播草花粉源的数字集成智能传感
- 批准号:
DP240103307 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Discovery Projects
Collaborative Research: New to IUSE: EDU DCL:Diversifying Economics Education through Plug and Play Video Modules with Diverse Role Models, Relevant Research, and Active Learning
协作研究:IUSE 新增功能:EDU DCL:通过具有不同角色模型、相关研究和主动学习的即插即用视频模块实现经济学教育多元化
- 批准号:
2315700 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Standard Grant
Building a Calculus Active Learning Environment Equally Beneficial Across a Diverse Student Population
建立一个对不同学生群体同样有益的微积分主动学习环境
- 批准号:
2315747 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Standard Grant
Planning Grant: Developing capacity to attract diverse students to the geosciences: A public relations framework
规划补助金:培养吸引多元化学生学习地球科学的能力:公共关系框架
- 批准号:
2326816 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: STEMEdIPRF: Towards a Diverse Professoriate: Experiences that Inform Underrepresented Scholars' Perceptions of Value Alignment and Career Decisions
博士后奖学金:STEMEdIPRF:走向多元化的教授职称:为代表性不足的学者对价值调整和职业决策的看法提供信息的经验
- 批准号:
2327411 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Standard Grant
Research Infrastructure: KCV EDGE (Equitable and Diverse Grant Ecosystem)
研究基础设施:KCV EDGE(公平且多样化的资助生态系统)
- 批准号:
2345142 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Cooperative Agreement
Research: Characterizing Gendered Socialization of Early Career Civil Engineers to Promote Inclusive Practices and Retention of a Diverse Workforce
研究:表征早期职业土木工程师的性别社会化,以促进包容性实践和保留多元化的劳动力
- 批准号:
2414042 - 财政年份:2024
- 资助金额:
$ 18.44万 - 项目类别:
Standard Grant