Collaborative Research: ABI Innovation: Algorithms and tools for modeling macromolecular assemblies
合作研究:ABI Innovation:用于模拟大分子组装体的算法和工具
基本信息
- 批准号:1356388
- 负责人:
- 金额:$ 23.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research seeks to develop novel methods and software tools for mining structures of large molecular assemblies from imaging data. Macromolecular assemblies, such as ribosomes and viruses, are responsible for driving nearly all cellular events. How these assemblies function, in turn, is closely related with their 3Dstructures, which are analogous to interlocking puzzles consisting of tens to hundreds of proteins, each having its own unique shape. The ability to model the structure of individual proteins as well as their architecture in an assembly is therefore critically important for understanding how the cell, and more broadly the biological system, function. While state-of-art imaging methods have been developed to capture macromolecular assemblies as 3D density volumes, such as X-ray crystallography and electron cryo-microscopy, creating structural models from such imagery remains a time-consuming and highly manual process in part due to the limited resolution of the data. The goal of the project is to streamline the image-to-structure pipeline by designing novel computational algorithms and developing a comprehensive modeling platform. The algorithms seek to leverage the advance in computer graphics and vision while combining image data, sequence data, and expert knowledge to improve the efficiency and accuracy of common modeling tasks. The modeling platform will integrate the investigator's methods with third-party modeling packages to provide an easy-to-use one-stop-shop for creating and validating structures of macromolecular assemblies all the way from raw images and individual protein sequences. The platform will be built upon the existing Gorgon software (http://gorgon.wustl.edu) and distributed together with the popular EMAN2 software for image analysis of density maps. The outcome of the project will have a direct impact on reducing the time and effort that biologists spend on translating experimental results to knowledge, discoveries, and treatments.More specifically, the project will focus on algorithmic development on three modeling tasks that currently either rely on manual labor or are computationally expensive. These problems include detecting secondary structure elements (e.g., alpha-helices and beta-sheets) at various non-atomic resolutions, tracing protein backbones in the density volume, and flexibly fitting probe structures into the volume. The algorithms will build upon successful techniques from computer graphics and vision, including mesh deformation using differential coordinates and spectral feature matching. To transform Gorgon into a modeling "hub", the software architecture and interface of Gorgon will be redesigned in this project to improve inter-operability, scalability, and usability. Plug-ins will also be developed for third-party tools that provide complementary modeling capability such as comparative modeling and protein folding.
本研究旨在开发从成像数据中挖掘大分子组装结构的新方法和软件工具。核糖体和病毒等大分子组合体几乎驱动了所有细胞事件。这些组合的功能反过来又与它们的3d结构密切相关,这类似于由数十到数百个蛋白质组成的连锁拼图,每个蛋白质都有自己独特的形状。因此,对单个蛋白质的结构及其在组装中的结构进行建模的能力对于理解细胞以及更广泛的生物系统的功能是至关重要的。虽然已经开发出最先进的成像方法来捕获大分子组装体作为3D密度体积,例如x射线晶体学和电子冷冻显微镜,但由于数据分辨率有限,从这些图像中创建结构模型仍然是一个耗时且高度手动的过程。该项目的目标是通过设计新颖的计算算法和开发综合建模平台来简化图像到结构的管道。该算法寻求利用计算机图形学和视觉的进步,同时结合图像数据、序列数据和专家知识,以提高常见建模任务的效率和准确性。建模平台将整合研究者的方法与第三方建模软件包,提供一个易于使用的一站式服务,用于从原始图像和单个蛋白质序列一路创建和验证大分子组装的结构。该平台将以现有的Gorgon软件(http://gorgon.wustl.edu)为基础,与流行的用于密度图图像分析的EMAN2软件一起发布。该项目的结果将对减少生物学家将实验结果转化为知识、发现和治疗所花费的时间和精力产生直接影响。更具体地说,该项目将专注于三个建模任务的算法开发,这些任务目前要么依赖手工劳动,要么在计算上很昂贵。这些问题包括在各种非原子分辨率下检测二级结构元素(例如,α -螺旋和β -片),在密度体积中追踪蛋白质骨干,以及灵活地将探针结构安装到体积中。该算法将建立在计算机图形学和视觉的成功技术之上,包括使用微分坐标和光谱特征匹配的网格变形。为了使Gorgon成为一个建模“枢纽”,本项目将对Gorgon的软件架构和接口进行重新设计,以提高互操作性、可扩展性和可用性。还将为第三方工具开发插件,以提供互补的建模功能,如比较建模和蛋白质折叠。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tao Ju其他文献
New Study on Determining the Weight of Index in Synthetic Weighted Mark Method
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Tao Ju - 通讯作者:
Tao Ju
Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia
中亚高地无人机激光雷达追踪的大规模中世纪城市主义
- DOI:
10.1038/s41586-024-08086-5 - 发表时间:
2024-10-23 - 期刊:
- 影响因子:48.500
- 作者:
Michael D. Frachetti;Jack Berner;Xiaoyi Liu;Edward R. Henry;Farhod Maksudov;Tao Ju - 通讯作者:
Tao Ju
CFAR and KPCA for SAR image target detection
用于SAR图像目标检测的CFAR和KPCA
- DOI:
10.1109/cisp.2010.5646813 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
WanJing Meng;Tao Ju;Hongyun Yu - 通讯作者:
Hongyun Yu
Apply RRT-based path planning to robotic manipulation of biological cells with optical tweezer
将基于 RRT 的路径规划应用于使用光镊对生物细胞进行机器人操作
- DOI:
10.1109/icma.2011.5985660 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Tao Ju;Shuang Liu;Jie Yang;Dong Sun - 通讯作者:
Dong Sun
A method for CBOC signal processing
一种CBOC信号处理方法
- DOI:
10.1109/iceice.2011.5777275 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Shuangna Zhang;Tao Ju;Xiao Chen - 通讯作者:
Xiao Chen
Tao Ju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tao Ju', 18)}}的其他基金
URoL: Epigenetics 2- Collaborative Research: Revealing how epigenetic inheritance governs the environmental challenge response with transformative 3D genomics and machine learning
URoL:表观遗传学 2- 协作研究:揭示表观遗传如何通过变革性 3D 基因组学和机器学习控制环境挑战响应
- 批准号:
1921728 - 财政年份:2019
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
- 批准号:
1759836 - 财政年份:2018
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
RI: Small: Functional Object Modeling
RI:小型:功能对象建模
- 批准号:
1618685 - 财政年份:2016
- 资助金额:
$ 23.47万 - 项目类别:
Continuing Grant
CGV: Medium: Collaborative Research: Developing conceptual models for navigation, marking, and inspection in the context of 3D image segmentation
CGV:媒介:协作研究:开发 3D 图像分割背景下的导航、标记和检查概念模型
- 批准号:
1302200 - 财政年份:2013
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
CGV: Small: Collaborative Research: Theories, algorithms, and applications of medial forms for shape analysis
CGV:小型:协作研究:形状分析的中间形式的理论、算法和应用
- 批准号:
1319573 - 财政年份:2013
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
CAREER: Reconstructing Geometrically and Topologically Correct Models
职业:重建几何和拓扑正确的模型
- 批准号:
0846072 - 财政年份:2009
- 资助金额:
$ 23.47万 - 项目类别:
Continuing Grant
Building Geometric Databases for Anatomy-Based Spatial Queries
为基于解剖学的空间查询构建几何数据库
- 批准号:
0743691 - 财政年份:2008
- 资助金额:
$ 23.47万 - 项目类别:
Continuing Grant
III-CXT: Collaborative Research: Integrated Modeling of Biological Nanomachines
III-CXT:协作研究:生物纳米机器的集成建模
- 批准号:
0705538 - 财政年份:2007
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Geometric Modeling for Spatial Analysis of Bio-Medical Data
生物医学数据空间分析的几何建模
- 批准号:
0702662 - 财政年份:2007
- 资助金额:
$ 23.47万 - 项目类别:
Continuing Grant
相似国自然基金
ABI3BP通过优化糖代谢改善阿尔茨海默症的研究
- 批准号:JCZRQN202500293
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
ABI4的氧-糖基化修饰负调控ABA信号的
分子机理研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
蛋白磷酸酶PP2C34和PP2C75去磷酸化ABI1激活ABA信号途径的作用机理研究
- 批准号:32370331
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
耐干苔藓脱落酸信号关键因子ABI3调控机理研究
- 批准号:31900270
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
SRRM4介导Abi1可变剪接调控平滑肌细胞表型转化在动脉粥样硬化中的关键作用和机制研究
- 批准号:81800415
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
拟南芥转录因子ABI5和MYB30共调控ABA受体PYL12参与种子萌发的机制研究
- 批准号:31872656
- 批准年份:2018
- 资助金额:58.0 万元
- 项目类别:面上项目
野生老芒麦盐胁迫过程中ABI5基因作用机制研究
- 批准号:31802121
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ABI3对阿尔茨海默病小胶质细胞吞噬功能调控及机制研究
- 批准号:81801266
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
拟南芥ABI5亚家族九个成员的生物学功能的精细比较研究
- 批准号:31860063
- 批准年份:2018
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
ABI1拼接异构体在结直肠癌细胞侵袭和转移中的作用机制研究
- 批准号:81672853
- 批准年份:2016
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
- 批准号:
2034568 - 财政年份:2021
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
- 批准号:
2201182 - 财政年份:2021
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
- 批准号:
2209978 - 财政年份:2021
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
- 批准号:
2028361 - 财政年份:2020
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
- 批准号:
2048296 - 财政年份:2020
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
- 批准号:
2021734 - 财政年份:2020
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
- 批准号:
2027203 - 财政年份:2019
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
- 批准号:
1756250 - 财政年份:2018
- 资助金额:
$ 23.47万 - 项目类别:
Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
- 批准号:
1759472 - 财政年份:2018
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
- 批准号:
1759729 - 财政年份:2018
- 资助金额:
$ 23.47万 - 项目类别:
Standard Grant