Collaborative Research: ABI Innovation: Rapid prototyping of semantic enhancements to biodiversity informatics platforms

合作研究:ABI 创新:生物多样性信息学平台语义增强的快速原型设计

基本信息

  • 批准号:
    1356515
  • 负责人:
  • 金额:
    $ 42.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-15 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

This research aims to help scientists develop and use relatively simple tools to describe species in a way that makes those descriptions easier to share with other scientists and easier for computers to process and analyze. Taxonomists are scientists who describe the world's biodiversity. Taxonomists' descriptions of millions of species allow scientists to do many different kinds of research, including basic biology, environmental science, climate research, agriculture, and medicine. The problem is that describing any one species is not easy. The language used by taxonomists to describe their data is complex, and typically not easily understandable by computers nor even other scientists. This situation makes it difficult to search for patterns across the millions of species that have been documented by thousands of different researchers over many decades of work worldwide. Innovation from this project is applicable to the long-term development of open source software initiatives serving laboratories throughout the world, and the research facilitates the production of open, shared data, as mandated by various federal agencies. As a result of this project, these data will become more accessible and informative to the general public. The project provides rich, real-world training for graduate students in library and information sciences, training them to be cross-disciplinary researchers in a field that is in need of new experts. Collaborating experts studying bees, wasps, and ants will receive training on the cutting edge theories and methods from the bioinformatics toolbox developed as a consequence of this project. In return their contributions of data will act as the basis for computational benchmarks needed in areas of logical inference and data modeling.This research addresses the problem of how to produce and utilize semantic data, specifically semantic phenotypes, within the taxonomic context of describing the Earth's biological diversity. The approach to be taken is bottom-up and iterative, involving the rapid prototyping of tools, combining of existing tools, and the tailoring of applications developed for one purpose but now being reused for this scientific activity. Scientists are busy innovating partial solutions by tinkering with and combining available computer programs and datasets. Their efforts comprise an incredibly productive source of innovation, since it is often much easier and faster to combine computer resources that already exist than to build something from scratch. However such cobbling together of resources to meet a need can benefit from analysis and active support. In particular, a more principled set of approaches can make innovations easier to share and to maintain. With a focus on the Hymenoptera, the researchers plan an innovative approach for biodiversity informatics based on work in the field of Computer Supported Cooperative Work (CSCW). Using a combination of ethnography to define work practice, user-centered design, and iterative agile software development, the collaboration between information scientists, biologists, and application developers aims to produce a suite of concrete deliverables, a rapid prototype portfolio, comprising interface and workflow tools, and end user requirements for semantic phenotype production. The project will explore and document examples of innovative prototyping of solutions by scientists to understand how it occurs, what it is that scientists most need, and how these can be most effectively supported. These components may be generalized to allow broader scientific use.
这项研究旨在帮助科学家开发和使用相对简单的工具来描述物种,使这些描述更容易与其他科学家分享,也更容易让计算机处理和分析。分类学家是描述世界生物多样性的科学家。分类学家对数百万个物种的描述使科学家能够进行许多不同类型的研究,包括基础生物学、环境科学、气候研究、农业和医学。问题是,描述任何一个物种都不容易。分类学家用来描述他们的数据的语言是复杂的,通常不容易被计算机甚至其他科学家理解。这种情况使得在数百万物种中寻找模式变得困难,这些物种已被世界各地数千名不同的研究人员在数十年的工作中记录下来。 该项目的创新适用于服务于世界各地实验室的开源软件计划的长期开发,该研究促进了开放共享数据的产生,这是各联邦机构的授权。由于这一项目,这些数据将更容易为公众所获取和提供信息。该项目为图书馆和信息科学的研究生提供了丰富的现实世界培训,将他们培养成需要新专家的领域的跨学科研究人员。研究蜜蜂、黄蜂和蚂蚁的合作专家将接受作为该项目结果开发的生物信息学工具箱中的前沿理论和方法的培训。作为回报,他们的贡献的数据将作为基础的逻辑推理和数据modeling.This研究解决了如何产生和利用语义数据,特别是语义表型,描述地球的生物多样性的分类背景下的计算基准。将采取的方法是自下而上和迭代的,涉及工具的快速原型制作,现有工具的组合,以及为一个目的而开发的应用程序的定制,但现在正在重新用于这一科学活动。科学家们正忙碌通过修补和组合现有的计算机程序和数据集来创新部分解决方案。他们的努力构成了一个令人难以置信的富有成效的创新源泉,因为将现有的计算机资源联合收割机组合起来往往比从头开始构建东西更容易和更快。然而,这种为满足需求而拼凑资源的做法可以得益于分析和积极支持。特别是,一套更有原则的方法可以使创新更容易分享和维护。研究人员以水虻为重点,计划在计算机支持的协同工作(CSCW)领域的工作的基础上,为生物多样性信息学提供一种创新的方法。使用人种学的组合来定义工作实践,以用户为中心的设计和迭代敏捷软件开发,信息科学家,生物学家和应用程序开发人员之间的合作旨在产生一套具体的可交付成果,快速原型组合,包括界面和工作流工具,以及最终用户对语义表型生产的需求。该项目将探索和记录科学家对解决方案进行创新原型设计的例子,以了解它是如何发生的,科学家最需要的是什么,以及如何最有效地支持这些。这些组成部分可加以推广,以便在科学上得到更广泛的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Yoder其他文献

Psychosocial Interventions for Older Patients With Post Traumatic Stress Disorder
  • DOI:
    10.1016/j.jagp.2012.12.064
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Matthew Yoder;John Kasckow;Steven R. Thorp;Kathryn M. Magruder
  • 通讯作者:
    Kathryn M. Magruder
Priming of Consensual and Nonconsensual Sexual Scripts: An Experimental Test of the Role of Scripts in Rape Attributions
一致性和非一致性性脚本的启动:对脚本在强奸归因中作用的实验测试
  • DOI:
    10.1007/s11199-006-9017-z
  • 发表时间:
    2006-10-27
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Heather L. Littleton;Danny Axsom;Matthew Yoder
  • 通讯作者:
    Matthew Yoder

Matthew Yoder的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Yoder', 18)}}的其他基金

Collaborative Research: An integrative approach to understanding the evolution and systematics of Chalcidoidea: A recent megaradiation of Hymenoptera
合作研究:了解小球纲进化和系统学的综合方法:膜翅目最近的大辐射
  • 批准号:
    1555053
  • 财政年份:
    2016
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    2021734
  • 财政年份:
    2020
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
  • 批准号:
    1854685
  • 财政年份:
    2018
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
  • 批准号:
    1756250
  • 财政年份:
    2018
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
  • 批准号:
    1759472
  • 财政年份:
    2018
  • 资助金额:
    $ 42.12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了