FRG: Collaborative Research: Developing Mathematical Algorithms for Adaptive, Geodesic Mesh MHD for use in Astrophysics and Space Physics

FRG:协作研究:开发用于天体物理学和空间物理学的自适应测地网格 MHD 的数学算法

基本信息

  • 批准号:
    1361219
  • 负责人:
  • 金额:
    $ 12.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

Simulation tools for astrophysical and space physics systems share a set of common requirements ? they need to robustly simulate magnetohydrodynamic (MHD) flows around spherical bodies with high accuracy. This multidisciplinary project will develop algorithms from applied mathematics for robust, highly accurate non-relativistic MHD on geodesic meshes. In the past few years new schemes for simulating conservation laws with truly multi-dimensional divergence free approximate Riemann solvers for applications have been developed. Currently, these Riemann solvers are only available for two-dimensional rectangular structured meshes for MHD. This project will employ a geodesic mesh to provide the best possible coverage for simulations of magnetohydrodynamic flows around spherical bodies and to incorporate Delaunay triangulation to achieve high accuracy. Divergence-free formulations of vector fields can be found on these triangular meshes. Simulation tools for astrophysical and space physics systems share a set of common requirements ? they need to robustly simulate magnetohydrodynamic (MHD) flows around spherical bodies with high accuracy. Building a computational framework, based on shared needs in space physics and astrophysics, will unleash important synergies between these two allied fields of study. The MHD equations are a combination of the Navier-Stokes equations for fluid dynamics and Maxwell?s equations for electromagnetism. Thus, the MHD equations require numerical solvers that incorporate the hydrodynamic fluid motion and enforce the divergence free magnetic field, i.e. no magnetic monopoles, requirements on the geometric domain approximated by a polygonal mesh. The nature of the MHD equations closely couples solution methodologies to the underlying mesh, making it necessary to develop new algorithms for the divergence-free reconstruction of the magnetic field on novel mesh structures. Additionally, the MHD system is formulated as a system of conservation laws. With a traditional conservation law, the fluxes can be evolved on a dimension-by-dimension basis. The fact that different flux components are coupled in an involution-constrained system also makes a case for multidimensional upwinding based on multidimensional Riemann solvers. Such solver strategies are again intimately coupled to the mesh structure.
天体物理和空间物理系统的模拟工具有一套共同的要求?它们需要以高精度鲁棒地模拟围绕球体的磁流体动力学(MHD)流。这个多学科的项目将开发算法,从应用数学的鲁棒性,高精度的非相对论MHD测地线网格。在过去的几年中,新的计划,模拟守恒律与真正的多维发散自由近似黎曼解的应用程序已经开发。目前,这些黎曼求解器仅适用于MHD的二维矩形结构网格。该项目将采用测地线网格,为模拟球体周围的磁流体动力学流动提供尽可能好的覆盖范围,并结合Delaunay三角测量,以实现高精度。矢量场的无发散公式可以在这些三角形网格上找到。天体物理和空间物理系统的模拟工具有一套共同的要求?它们需要以高精度鲁棒地模拟围绕球体的磁流体动力学(MHD)流。建立一个基于空间物理学和天体物理学共同需求的计算框架,将释放这两个相关研究领域之间的重要协同作用。的MHD方程是一个组合的Navier-Stokes方程的流体动力学和麦克斯韦?电磁学的S方程。 因此,MHD方程需要数值求解器,该数值求解器包含流体动力学流体运动并强制发散自由磁场,即没有磁单极子,对由多边形网格近似的几何域的要求。MHD方程的性质紧密耦合的解决方案的方法,底层网格,使其有必要开发新的算法的发散自由重建的磁场上的新的网格结构。此外,MHD系统被制定为一个系统的守恒定律。利用传统的守恒定律,通量可以在逐维的基础上演化。不同的通量分量在对合约束系统中耦合的事实也使得基于多维黎曼解算器的多维逆风成为可能。这种求解器策略再次紧密耦合到网格结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Florinski其他文献

Superposed Epoch Analysis of Galactic Cosmic Rays and Solar Wind based on ACE Observations During Two Recent Solar Minima
基于最近两次太阳极小期 ACE 观测的银河宇宙线和太阳风的叠加历元分析
  • DOI:
    10.3847/1538-4357/abe4d2
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaocheng Guo;Vladimir Florinski;Chi Wang;Keyvan Ghanbari
  • 通讯作者:
    Keyvan Ghanbari
MHD Analysis of the Velocity Oscillations in the Outer Heliosphere
外日球层速度振荡的 MHD 分析
  • DOI:
    10.1002/2014gl059391
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Ken'ichi Fujiki;Haruichi Washimi;Keiji Hayashi;Gary P. Zank;Munetoshi Tokumaru;Takashi Tanaka;Vladimir Florinski;and Yuki Kubo
  • 通讯作者:
    and Yuki Kubo
Solar Wind Electrons Alphas and Protons (SWEAP) Investigation: Design of the Solar Wind and Coronal Plasma Instrument Suite for Solar Probe Plus
  • DOI:
    10.1007/s11214-015-0206-3
  • 发表时间:
    2015-10-29
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Justin C. Kasper;Robert Abiad;Gerry Austin;Marianne Balat-Pichelin;Stuart D. Bale;John W. Belcher;Peter Berg;Henry Bergner;Matthieu Berthomier;Jay Bookbinder;Etienne Brodu;David Caldwell;Anthony W. Case;Benjamin D. G. Chandran;Peter Cheimets;Jonathan W. Cirtain;Steven R. Cranmer;David W. Curtis;Peter Daigneau;Greg Dalton;Brahmananda Dasgupta;David DeTomaso;Millan Diaz-Aguado;Blagoje Djordjevic;Bill Donaskowski;Michael Effinger;Vladimir Florinski;Nichola Fox;Mark Freeman;Dennis Gallagher;S. Peter Gary;Tom Gauron;Richard Gates;Melvin Goldstein;Leon Golub;Dorothy A. Gordon;Reid Gurnee;Giora Guth;Jasper Halekas;Ken Hatch;Jacob Heerikuisen;George Ho;Qiang Hu;Greg Johnson;Steven P. Jordan;Kelly E. Korreck;Davin Larson;Alan J. Lazarus;Gang Li;Roberto Livi;Michael Ludlam;Milan Maksimovic;James P. McFadden;William Marchant;Bennet A. Maruca;David J. McComas;Luciana Messina;Tony Mercer;Sang Park;Andrew M. Peddie;Nikolai Pogorelov;Matthew J. Reinhart;John D. Richardson;Miles Robinson;Irene Rosen;Ruth M. Skoug;Amanda Slagle;John T. Steinberg;Michael L. Stevens;Adam Szabo;Ellen R. Taylor;Chris Tiu;Paul Turin;Marco Velli;Gary Webb;Phyllis Whittlesey;Ken Wright;S. T. Wu;Gary Zank
  • 通讯作者:
    Gary Zank
Dynamical Coupling between Anomalous Cosmic Rays and Solar Wind in Outer Heliosphere
外日球层异常宇宙线与太阳风的动力耦合
  • DOI:
    10.3847/1538-4357/ac82ed
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaocheng Guo;Yucheng Zhou;Vladimir Florinski;Chi Wang
  • 通讯作者:
    Chi Wang
The HLLD Riemann solver based on magnetic field decomposition method for the numerical simulation ofmagneto-hydrodynamics
基于磁场分解法的HLLD黎曼求解器用于磁流体动力学数值模拟
  • DOI:
    10.1016/j.jcp.2016.09.057
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xiaocheng Guo;Vladimir Florinski;Chi Wang
  • 通讯作者:
    Chi Wang

Vladimir Florinski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Florinski', 18)}}的其他基金

CISE Research Expansion Aspiring Investigators Conference: A Workshop on CISE Programs for Minority Serving Institutions in the Southern US Region
CISE 研究扩展有抱负的研究者会议:美国南部地区少数民族服务机构 CISE 项目研讨会
  • 批准号:
    2335821
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
Research Infrastructure: CC* Regional Computing: A Regional Computing Hub for Alabama Universities
研究基础设施:CC* 区域计算:阿拉巴马州大学的区域计算中心
  • 批准号:
    2232873
  • 财政年份:
    2022
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
CDS&E: AST: Collaborative Research: Computational science in support of space missions: plasma turbulence modeling on geodesic meshes
CDS
  • 批准号:
    2009871
  • 财政年份:
    2020
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
CAREER: Computational Physics for Research and Industry
职业:研究和工业计算物理
  • 批准号:
    0955700
  • 财政年份:
    2010
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 12.45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了