Sulfate Attack Mechanisms in Geopolymers: Measurements and Modeling at the Nanoscale

地质聚合物中的硫酸盐侵蚀机制:纳米尺度的测量和建模

基本信息

  • 批准号:
    1362039
  • 负责人:
  • 金额:
    $ 29.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

One of the main contributors to anthropogenic carbon dioxide emissions is ordinary Portland cement production, accounting for approximately 8 percent of total emissions. With Portland cement production forecast to double in the next 30 years it is imperative that low-carbon alternatives are successfully implemented in industry. Geopolymer cements have emerged as viable alternatives to Portland cement-based systems, however, there is the explicit need to be able to accurately predict the long-term durability performance of these cements for the successful implementation in the built environment. Nevertheless, as is the case for conventional cement systems, the exact chemical and physical processes controlling durability are not fully understood. Degradation of concrete exposed to sulfates is a serious durability concern for both conventional concrete and sustainable alternatives. Hence, the development of sulfate resistant concrete is extremely important for a wide range of infrastructure applications including sewer pipes, storm-water drainage systems, coastal structures and foundations. The outcome of this project will be the creation of sustainable cements with superior resistance to sulfate attack, which will benefit society by reducing costs associated with repair and maintenance of concrete structures exposed to sulfates.This project will investigate the atomic structure and morphology of sustainable geopolymer cements to improve our understanding of (i) cement formation mechanisms and (ii) chemical degradation processes caused by sulfate attack. The objective is firstly to discover the atomic processes that occur during formation of fly ash-slag-metakaolin geopolymer cement mixes by creating a geopolymer-specific atomistic modeling methodology utilizing quantum chemistry and molecular dynamics. Key characterization techniques will be employed to ensure experimental validity of the model, specifically in situ atomic analysis techniques at synchrotron and neutron user facilities, and Fourier-transform infrared spectroscopy. The structural models will be used to identify the key chemical mechanisms controlling geopolymer cement formation together with the influence of precursor chemistry on these mechanisms. The second objective of this project is to uncover and control the atomistic degradation mechanisms that occur during exposure to sulfate solutions. By exploiting the stability of the atomic structures most resilient to sulfate attack, mix designs will be engineered with improved sulfate resistance characteristics at the atomic level. The modeling methodology developed during the first part of the project will be extended to enable simulation of the chemical processes that occur when different sulfate salts are exposed to the geopolymer cement surfaces. In situ degradation experiments will be conducted to provide experimental validation of the models.
人为二氧化碳排放的主要贡献者之一是普通波特兰水泥生产,约占总排放量的8%。随着波特兰水泥产量预计在未来30年内翻一番,在工业中成功实施低碳替代品势在必行。地质聚合物水泥已经成为波特兰水泥基系统的可行替代品,然而,为了在建筑环境中成功实施,明确需要能够准确预测这些水泥的长期耐久性性能。然而,与传统水泥系统的情况一样,控制耐久性的确切化学和物理过程尚未完全了解。暴露于硫酸盐的混凝土的退化是传统混凝土和可持续替代品的严重耐久性问题。因此,抗硫酸盐混凝土的发展对于广泛的基础设施应用,包括下水道管道,雨水排水系统,沿海结构和基础,是非常重要的。该项目的成果将是创造具有上级抗硫酸盐侵蚀能力的可持续水泥,该项目将研究可持续地质聚合物水泥的原子结构和形态,以提高我们对(i)水泥形成机制和(ii)由硫酸盐侵蚀引起的化学降解过程。我们的目标是首先发现的原子过程中发生的粉煤灰-矿渣-偏高岭土地质聚合物水泥混合物的形成过程中,通过创建一个地质聚合物特定的原子建模方法,利用量子化学和分子动力学。将采用关键的表征技术,以确保该模型的实验有效性,特别是在同步加速器和中子用户设施的原位原子分析技术,傅里叶变换红外光谱。结构模型将用于确定控制地质聚合物水泥形成的关键化学机制以及前体化学对这些机制的影响。本项目的第二个目标是揭示和控制暴露于硫酸盐溶液过程中发生的原子降解机制。通过利用对硫酸盐侵蚀最有弹性的原子结构的稳定性,混合物设计将在原子水平上具有改进的抗硫酸盐特性。该项目第一部分开发的建模方法将得到扩展,以模拟不同硫酸盐暴露于地质聚合物水泥表面时发生的化学过程。将进行现场降解实验,以提供模型的实验验证。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Alkali-activated materials: the role of molecular-scale research and lessons from the energy transition to combat climate change
碱激活材料:分子尺度研究的作用以及应对气候变化的能源转型的经验教训
  • DOI:
    10.21809/rilemtechlett.2019.98
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    White, Claire
  • 通讯作者:
    White, Claire
A Roadmap for Production of Cement and Concrete with Low-CO2 Emissions
  • DOI:
    10.1007/s12649-020-01180-5
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    J. V. van Deventer;C. White;R. Myers
  • 通讯作者:
    J. V. van Deventer;C. White;R. Myers
In situ quasi-elastic neutron scattering study on the water dynamics and reaction mechanisms in alkali-activated slags
  • DOI:
    10.1039/c9cp00889f
  • 发表时间:
    2019-05-28
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Gong, Kai;Cheng, Yongqiang;White, Claire E.
  • 通讯作者:
    White, Claire E.
Impact of activator chemistry on permeability of alkali-activated slags
  • DOI:
    10.1111/jace.14996
  • 发表时间:
    2017-10
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    A. Blyth;C. Eiben;G. Scherer;C. White
  • 通讯作者:
    A. Blyth;C. Eiben;G. Scherer;C. White
Alkali-activation of CaO-FeOx-SiO2 slag: Formation mechanism from in-situ X-ray total scattering
  • DOI:
    10.1016/j.cemconres.2019.04.019
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Peys, A.;White, C. E.;Pontikes, Y.
  • 通讯作者:
    Pontikes, Y.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Claire White其他文献

Establishing Personal Identity in Reincarnation: Minds and Bodies Reconsidered
在轮回中建立个人身份:重新考虑思想和身体
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claire White
  • 通讯作者:
    Claire White
The Dead May Kill You
死者可能会杀了你
  • DOI:
    10.1163/15685373-12340135
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    Claire White;Maya Marin;D. Fessler
  • 通讯作者:
    D. Fessler
Sensuous Communism: Sand with Marx
感性共产主义:与马克思的沙子
  • DOI:
    10.1215/00104124-2862021
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claire White
  • 通讯作者:
    Claire White
Improving Reading across Subject Areas with Word Generation. CREATE Brief.
通过单词生成提高跨学科领域的阅读。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Lawrence;Claire White;C. Snow
  • 通讯作者:
    C. Snow
The Cognitive Foundations of Reincarnation
轮回的认知基础
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Claire White
  • 通讯作者:
    Claire White

Claire White的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Claire White', 18)}}的其他基金

EAGER: Increased Service Life of Sustainable Cements via Electric Fields
EAGER:通过电场延长可持续水泥的使用寿命
  • 批准号:
    2243059
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Optimizing the Temperature and Chemical Stability of Fly Ash Aluminosilicate Composites at the Nanoscale
在纳米尺度上优化粉煤灰硅铝酸盐复合材料的温度和化学稳定性
  • 批准号:
    1727346
  • 财政年份:
    2017
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
CAREER: SusChEM: Controlling Carbonation Degradation in Sustainable Cements by Stabilizing Amorphous Calcium Carbonate
职业:SusChEM:通过稳定无定形碳酸钙来控制可持续水泥中的碳化降解
  • 批准号:
    1553607
  • 财政年份:
    2016
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

适应多类型Insider Attack的入侵检测与精确定位方法的研究
  • 批准号:
    60803161
  • 批准年份:
    2008
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding Attack Mechanisms against AI through Causal Structures of Classification and Building Countermeasures
通过分类因果结构了解人工智能攻击机制并构建对策
  • 批准号:
    23H00483
  • 财政年份:
    2023
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
SaTC: CORE: Small: Collaborative: A Framework for Enhancing the Resilience of Cyber Attack Classification and Clustering Mechanisms
SaTC:核心:小型:协作:增强网络攻击分类和集群机制弹性的框架
  • 批准号:
    2122631
  • 财政年份:
    2021
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Flexibility and Robustness of attack and evasion: reverse-engineering the mechanisms of behavioral control
协作研究:攻击和规避的灵活性和鲁棒性:行为控制机制的逆向工程
  • 批准号:
    1856237
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Flexibility and robustness of attack and evasion: reverse-engineering the mechanisms of behavioral control
合作研究:攻击和规避的灵活性和鲁棒性:逆向工程行为控制机制
  • 批准号:
    1855956
  • 财政年份:
    2019
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: A Framework for Enhancing the Resilience of Cyber Attack Classification and Clustering Mechanisms
SaTC:核心:小型:协作:增强网络攻击分类和集群机制弹性的框架
  • 批准号:
    1814825
  • 财政年份:
    2018
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Standard Grant
CRISPR Capture, Destroy, and Counter-Attack Mechanisms
CRISPR 捕获、破坏和反击机制
  • 批准号:
    10165279
  • 财政年份:
    2016
  • 资助金额:
    $ 29.99万
  • 项目类别:
CRISPR Capture, Destroy, and Counter-Attack Mechanisms
CRISPR 捕获、破坏和反击机制
  • 批准号:
    10784187
  • 财政年份:
    2016
  • 资助金额:
    $ 29.99万
  • 项目类别:
CRISPR Capture, Destroy, and Counter-Attack Mechanisms
CRISPR 捕获、破坏和反击机制
  • 批准号:
    10398928
  • 财政年份:
    2016
  • 资助金额:
    $ 29.99万
  • 项目类别:
CRISPR Capture, Destroy, and Counter-Attack Mechanisms
CRISPR 捕获、破坏和反击机制
  • 批准号:
    10627779
  • 财政年份:
    2016
  • 资助金额:
    $ 29.99万
  • 项目类别:
CAREER: Do anemonefish exploit anemone sensory mechanisms to evade attack by their hosts?
职业:海葵鱼是否利用海葵感觉机制来逃避宿主的攻击?
  • 批准号:
    1350571
  • 财政年份:
    2014
  • 资助金额:
    $ 29.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了