Optical and Electrical Control of Magnetism and Magneto-Optical Response in Semiconductor Nanoparticles and Nanoparticle Devices
半导体纳米颗粒和纳米颗粒器件中磁性和磁光响应的光电控制
基本信息
- 批准号:214348296
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2012
- 资助国家:德国
- 起止时间:2011-12-31 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One key challenge in applied science and engineering is the realization of materials and devices with combined electrical, magnetic and optical functionality at room temperature. The central goal of the project is to work out a fundamental understanding of the magnetooptical properties in colloidal, magnetically doped semiconductors (quantum dots, nanocluster, nano ribbons) and finally to develop schemes for achieving electrical and optical control of magnetism and magnetooptical functionality. Hereby, we profit from the worldwide unique nanomaterials prepared by our key partners, Prof. Hyeon, U Seoul, and Prof. Gamelin, U Washington. The main scientific objectives can be divided into two closely connected subgoals. The first sub-goal is to demonstrate electrically controlled magneto-optical functionality via carrier-induced modification of the spin alignment of transition metal dopants. For that purpose, magnetically doped nanocrystals will be incorporated into device schemes allowing electrical injection of either electrons or holes, or both. This, e.g., enables a separate identification of the interaction between electrons and holes, respectively, with magnetic dopants. The second sub-goal developed from our recent results on digitally doped nanoclusters and quantum dots. Hereby, the ultimate limit of semiconductor doping will be addressed by investigating single nanocrystals doped with a controlled number of doping atoms down to the level of one. This points towards the newly developed research field of solotronics, where single doping atoms control functionality. Together with our project partners we intend to extend the dilute magnetic semiconductor nanomaterial family by alternative architectures (core-shell design, magic-sized cluster) and novel dopants (Co, Cu, in addition to Mn), including co-doping with, e.g. Ag, for adding additional charge carriers on purpose. We expect that the strong quantum and dielectric confinement in these shape and size engineered nanomaterials increase the energy scale of exchange effects largely (about one to two orders of magnitude) with respect to their epitaxially grown counterparts, paving the way to room temperature functionality.
应用科学和工程的一个关键挑战是在室温下实现具有电,磁和光学功能的材料和设备。该项目的中心目标是对胶体磁掺杂半导体(量子点,纳米团簇,纳米带)的磁光特性进行基本了解,并最终开发实现磁性和磁光功能的电气和光学控制的方案。因此,我们从我们的主要合作伙伴Hyeon教授,U首尔和Gamelin教授,U华盛顿准备的全球独特的纳米材料中获益。主要科学目标可分为两个密切相关的次级目标。第一个子目标是通过载流子诱导的过渡金属掺杂剂的自旋取向的改性来证明电控磁光功能。为此,磁性掺杂的纳米晶体将被纳入允许电子或空穴或两者的电注入的器件方案中。例如,使得能够分别单独识别电子和空穴与磁性掺杂剂之间的相互作用。第二个子目标是从我们最近关于数字掺杂纳米团簇和量子点的结果中发展出来的。因此,半导体掺杂的最终极限将通过研究掺杂有受控数量的掺杂原子的单个纳米晶体来解决。这指向了新开发的研究领域solotronics,其中单个掺杂原子控制功能。与我们的项目合作伙伴一起,我们打算通过替代架构(核-壳设计,魔法大小的簇)和新型掺杂剂(Co,Cu,除了Mn)来扩展稀磁半导体纳米材料家族,包括与Ag共掺杂,以增加额外的电荷载流子。我们预计,这些形状和尺寸工程纳米材料中的强量子和介电限制相对于其外延生长的对应物大大增加了交换效应的能量尺度(约一到两个数量级),为室温功能铺平了道路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Gerd Bacher其他文献
Professor Dr. Gerd Bacher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Gerd Bacher', 18)}}的其他基金
Exchange interactions in wavefunction engineered, transition metal doped 2D hetero-nanoplatelets
波函数工程、过渡金属掺杂二维异质纳米片中的交换相互作用
- 批准号:
399377107 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Magneto-Optical Functionality and Energy Transfer in Metal-Halide Perovskite Nanocrystals Doped with Transition Metals
掺杂过渡金属的金属卤化物钙钛矿纳米晶体的磁光功能和能量传输
- 批准号:
410410899 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
High-speed nanowire LED in the blue/green spectral range
蓝/绿光谱范围内的高速纳米线 LED
- 批准号:
387904162 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Research Grants
Electron-Nuclear Spin Manipulation in Semiconductor Quantum Dots by Electrical Currents
通过电流对半导体量子点进行电子核自旋操纵
- 批准号:
129228376 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Einzel-Photonenemitter auf der Basis von CdSe/ZnSe Einzel-Quantenpunkt-Leuchtdioden bei Raumtemperatur
基于CdSe/ZnSe单量子点发光二极管的室温单光子发射器
- 批准号:
5447590 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Grants
Dynamical properties of nanostructured Ferromagnet - Diluted Magnetic Semiconductor Hybrids
纳米结构铁磁体的动力学特性 - 稀磁半导体混合体
- 批准号:
5373082 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Priority Programmes
Einzel-Quantenpunkte und deren Kopplung auf der Basis von (Cd,Zn)Se/Zn(S,Se): Selbstorganisiertes Wachstum und optische Charakterisierung mittels Nanosonden Nanosonden
基于 (Cd,Zn)Se/Zn(S,Se) 的单量子点及其耦合:使用纳米探针的自组织生长和光学表征
- 批准号:
5156596 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Grants
Demystifying and Controlling the Exciton Fine Structure in Single Inorganic Perovskite Nanoplatelets
揭秘并控制单一无机钙钛矿纳米片中的激子精细结构
- 批准号:
520014557 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
Gas-solid photocatalytic oxidation of dinitrogen to nitrogen oxides: Mechanism and kinetics
二氮气固光催化氧化成氮氧化物:机理和动力学
- 批准号:
502052591 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
Investigation of anisotropic spin phenomena in doped single nanocrystals probed by luminescence spectroscopy in a vector magnetic field
矢量磁场中发光光谱探测掺杂单纳米晶中各向异性自旋现象的研究
- 批准号:
435349552 - 财政年份:
- 资助金额:
-- - 项目类别:
Research Grants
相似海外基金
Control of Na contents in group IV clathrate and their electrical and optical characterizations
IV族包合物中Na含量的控制及其电学和光学表征
- 批准号:
20K03820 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electrical and optical creation and control of non-Abelian anyons
非阿贝尔任意子的电学和光学创建和控制
- 批准号:
19H05610 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (S)
Shape control of Ag nanocoils and development of electrical and optical applications
银纳米线圈的形状控制以及电学和光学应用的开发
- 批准号:
19K04085 - 财政年份:2019
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a novel method for synthesis of nano-semiconductors using microorganisms and its optical and electrical control
微生物合成纳米半导体新方法及其光电控制的发展
- 批准号:
18K05391 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electrical control of optical properties in ferromagnetic materials
铁磁材料光学特性的电控制
- 批准号:
25887016 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Electrical and picosecond optical control of transistor-type plasmonic antenna switches
晶体管型等离子体天线开关的电学和皮秒光学控制
- 批准号:
EP/J010758/1 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grant
Electrical and picosecond optical control of plasmonic nanoantenna hybrid devices
等离子体纳米天线混合器件的电学和皮秒光学控制
- 批准号:
EP/J011797/1 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Research Grant
Optical coherent control of electrical currents in semiconductor-metal hybrid nanostructures: physics and spectroscopic applications
半导体-金属混合纳米结构中电流的光学相干控制:物理和光谱应用
- 批准号:
138179008 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Priority Programmes
Development in electrical and optical properties of organic materials by 3-D structural control using dendrimer as a command molecule.
使用树枝状聚合物作为命令分子,通过 3D 结构控制开发有机材料的电学和光学性质。
- 批准号:
18550186 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research of control on organic interface and their application to high speed organic optical and electrical devices
有机界面控制及其在高速有机光电器件中的应用研究
- 批准号:
16360173 - 财政年份:2004
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)