Singular Combinatorics

奇异组合学

基本信息

  • 批准号:
    1362485
  • 负责人:
  • 金额:
    $ 14.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-01 至 2018-04-30
  • 项目状态:
    已结题

项目摘要

It turns out that standard axioms of set theory do not settle many classical questions. For example, Gödel and Cohen showed that the Continuum Hypothesis (that there is no set whose cardinality is strictly between that of the integers and that of the real numbers) is independent of this axiom system. Since then, a long standing project in set theory has been to find the "right" strengthening of the axioms. There are several candidates, and this project contributes to understanding of the nature of these extensions. This project explores various aspects of combinatorial set theory. The main goal is to investigate the interplay between large cardinals, forcing, and principles such as square, the tree property, and Shelah's theory of possible cofinalities and their applications to singular combinatorics. The work is part of a project to determine the canonical structures that exist at singular cardinals and their successors in extensions of ZFC by large cardinals or strong forcing axioms. The long term goal is understanding what is possible relative to large cardinals, what can be obtained as remnants of large cardinals, and developing the theory of certain forcing posets. Forcing is used to test both the power and limitations of these strengthenings of ZFC, and combinatorial principles like the tree property provide the key test questions.
事实证明,集合论的标准公理并不能解决许多经典问题。例如,哥德尔和科恩证明了连续统假设(即不存在基数严格介于整数和真实的数之间的集合)与这个公理系统无关。从那时起,集合论中一个长期存在的项目就是找到公理的“正确”加强。有几个候选人,这个项目有助于理解这些扩展的性质。这个项目探讨了组合集合论的各个方面。主要目标是调查大基数之间的相互作用,迫使,和原则,如广场,树的财产,和谢拉的理论可能的共尾性及其应用奇异组合。这项工作是一个项目的一部分,以确定存在于奇异的基数和他们的继任者在ZFC的扩展大基数或强强制公理的规范结构。长期的目标是了解什么是可能的相对于大基数,什么可以得到作为残余的大基数,并发展理论的某些强制偏序集。强迫被用来测试ZFC的这些增强的力量和局限性,而像树属性这样的组合原则提供了关键的测试问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dima Sinapova其他文献

2021 NORTH AMERICAN ANNUAL MEETING OF THE ASSOCIATION FOR SYMBOLIC LOGIC
2021年北美符号逻辑协会年会
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    G. Bezhanishvili;C. Franks;Selwyn Ng;Dima Sinapova;M. Thomas;Paddy Blanchette;Peter A. Cholak;J. Knight
  • 通讯作者:
    J. Knight
The super tree property at the successor of a singular
超级树属性在单一的后继者
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Sherwood Hachtman;Dima Sinapova
  • 通讯作者:
    Dima Sinapova
Sigma-Prikry forcing I: The Axioms
Sigma-Prikry 强迫 I:公理
Ordinal definable subsets of singular cardinals
奇异基数的序数可定义子集
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    J. Cummings;S. Friedman;M. Magidor;A. Rinot;Dima Sinapova
  • 通讯作者:
    Dima Sinapova
Sigma-Prikry forcing II: Iteration Scheme
Sigma-Prikry 强迫 II:迭代方案
  • DOI:
    10.1142/s0219061321500197
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alejandro Poveda;A. Rinot;Dima Sinapova
  • 通讯作者:
    Dima Sinapova

Dima Sinapova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dima Sinapova', 18)}}的其他基金

Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
  • 批准号:
    2308248
  • 财政年份:
    2023
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Continuing Grant
Infinitary Combinatorics
无穷组合学
  • 批准号:
    2246781
  • 财政年份:
    2023
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Standard Grant
Combinatorial Set Theory, Forcing, and Large Cardinals
组合集合论、强迫和大基数
  • 批准号:
    1954117
  • 财政年份:
    2020
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Continuing Grant
CAREER: Forcing and Large Cardinals
职业生涯:强迫和大红衣主教
  • 批准号:
    1454945
  • 财政年份:
    2015
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Continuing Grant

相似海外基金

Dynamical Approaches to Number Theory and Additive Combinatorics
数论和加法组合学的动态方法
  • 批准号:
    EP/Y014030/1
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Research Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
  • 批准号:
    2349004
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Standard Grant
Conference: Solvable Lattice Models, Number Theory and Combinatorics
会议:可解格子模型、数论和组合学
  • 批准号:
    2401464
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
  • 批准号:
    2347850
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Continuing Grant
Combinatorics of Total Positivity: Amplituhedra and Braid Varieties
总正性的组合:幅面体和辫子品种
  • 批准号:
    2349015
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Standard Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Standard Grant
Conference: Additive Combinatorics 2024
会议:加性组合学 2024
  • 批准号:
    2418414
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Standard Grant
Conference: Combinatorial Algebra Meets Algebraic Combinatorics
会议:组合代数遇上代数组合学
  • 批准号:
    2348525
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Standard Grant
Conference: Shanks Workshop on Combinatorics and Graph Theory
会议:尚克斯组合学和图论研讨会
  • 批准号:
    2415358
  • 财政年份:
    2024
  • 资助金额:
    $ 14.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了