Analytical Methods in Mathematical Physics
数学物理分析方法
基本信息
- 批准号:1363432
- 负责人:
- 金额:$ 33.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project on the interface of mathematics and physics will enhance the qualitative and quantitative understanding of complex phenomena occurring in nature by mathematical methods. It consists of several models which are motivated, for instance, by the study of exotic states of matter, superconductivity, and fluid mechanics. The methods used in this study come from techniques in mathematical analysis, which itself is a sophisticated abstraction of calculus. While the models are specific, they show certain general properties and the methods that need to be developed will be relevant beyond the context of these concrete cases.More specifically, the PI intends to quantify dispersive properties of a Fermi gas by novel forms of so-called Strichartz inequalities, via exploring their connection with the restriction problem in harmonic analysis. It is intended to rigorously derive the macroscopic Ginzburg-Landau theory of superconductivity from the microscopic BCS theory with particular emphasis on the Meisner effect. Mathematical tools include semi-classical analysis and a non-commutative calculus of variations. Ground states of non-linear, non-local equations and their stationary and dynamical role will be studied, in particular, their global and local uniqueness properties will be analyzed.In addition, an attempt will be made to find the sharp form of two functional inequalities which display conformal invariance and have both physical and geometric content.
本项目以数学与物理相结合的方式,加强以数学方法对自然界复杂现象的定性与定量理解。它由几个模型组成,例如,由物质的奇异状态、超导性和流体力学的研究驱动。本研究中使用的方法来自数学分析技术,数学分析本身就是微积分的复杂抽象。虽然模型是具体的,但它们显示了某些一般属性,需要开发的方法将与这些具体案例的上下文相关。更具体地说,PI打算通过探索其与谐波分析中的限制问题的联系,通过所谓的新形式的Strichartz不等式来量化费米气体的色散特性。本文旨在从微观的BCS理论中严格推导出宏观的金兹堡-朗道超导理论,并特别强调迈斯纳效应。数学工具包括半经典分析和变分的非交换演算。本文将研究非线性、非局部方程的基态及其稳态和动态作用,特别是分析其全局唯一性和局部唯一性。此外,将尝试找到两个函数不等式的尖锐形式,它们显示保形不变性,并具有物理和几何内容。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semiclassical asymptotics for a class of singular Schrödinger operators
一类奇异薛定谔算子的半经典渐近
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Frank, Rupert L.;Larson, Simon
- 通讯作者:Larson, Simon
The periodic Lieb–Thirring inequality
周期性 Lieb–Thirring 不等式
- DOI:10.4171/ecr/18-1/8
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Frank, Rupert L.;Gontier, David;Lewin, Mathieu
- 通讯作者:Lewin, Mathieu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rupert Frank其他文献
Rupert Frank的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rupert Frank', 18)}}的其他基金
Variational Methods in Mathematical Physics and Analysis
数学物理与分析中的变分方法
- 批准号:
1954995 - 财政年份:2020
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
Mathematical Analysis in Condensed Matter and Atomic Physics
凝聚态与原子物理中的数学分析
- 批准号:
1347399 - 财政年份:2013
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
Mathematical Analysis in Condensed Matter and Atomic Physics
凝聚态与原子物理中的数学分析
- 批准号:
1068285 - 财政年份:2011
- 资助金额:
$ 33.9万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Mathematical Methods for Novel Metamaterials
会议:新型超材料的数学方法
- 批准号:
2328600 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
- 批准号:
2347546 - 财政年份:2024
- 资助金额:
$ 33.9万 - 项目类别:
Standard Grant
Mathematical methods for quantum many-body systems
量子多体系统的数学方法
- 批准号:
2895294 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Studentship
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
- 批准号:
23K03210 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of mathematics teaching materials, teaching methods, and curricula to foster the ability to create and analyze mathematical models
开发数学教材、教学方法和课程,培养创建和分析数学模型的能力
- 批准号:
23H01028 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Data Analysis of Cross-Coupling Reactions Using Enhanced Mathematical Methods to Decipher Complexity
使用增强数学方法分析交叉偶联反应的复杂性
- 批准号:
2885384 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Studentship
Development of mathematical foundation for methods of neuronal activity data analysis
神经元活动数据分析方法的数学基础的发展
- 批准号:
23K10978 - 财政年份:2023
- 资助金额:
$ 33.9万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Methods in Linguistics and Phylogenetics
语言学和系统发育学中的数学方法
- 批准号:
RGPIN-2019-06911 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Discovery Grants Program - Individual
Mathematical modelling and computational methods for imaging and advanced sensor technology
成像和先进传感器技术的数学建模和计算方法
- 批准号:
RGPIN-2020-04561 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Discovery Grants Program - Individual
Mathematical theory and computational methods for seismic full waveform inversion problems
地震全波形反演问题的数学理论与计算方法
- 批准号:
RGPIN-2019-04830 - 财政年份:2022
- 资助金额:
$ 33.9万 - 项目类别:
Discovery Grants Program - Individual