Sphere packings and related extremal problems
球堆积和相关的极值问题
基本信息
- 批准号:1400876
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is devoted to the problems of sphere packings in metric spaces, other point allocations, and related combinatorial objects. The presentation of the findings through conferences and colloquia, both in the USA and abroad, will broaden the discussion of these topics and inspire further developments therein. Likewise the investigators expect to contribute to the educational goal of informing the next generation of mathematicians and inspiring them to conduct related research of their own.The investigators will employ two major methods of analyzing extremal point allocations. The method of jammed or irreducible graphs goes back to Schutte and van der Waerden, Fejes Toth, and Danzer, and is directly related to the rigidity theory. The method of positive definite constraints that has been used to analyze the properties of point configurations, and to derive bounds on their size, relies on classical works of Schoenberg, Bochner, and Delsarte. The PI and co-PI intend to solve the Tammes problem for values of n larger than 13, classify irreducible graphs on a two-dimensional sphere, and describe optimal sphere packings on other surfaces (including a square flat torus with n larger than 8) and in higher dimensions. The investigators will also attempt to quantify the impact of the positive definite relaxation on the description of point sets and the accuracy of the known Delsarte bounds on codes. Through the proposed analysis of few-distance sets, the PI and co-PI will contribute new tools to a classic combinatorial problem; while geometric ideas used in the study of such sets could lead to new approaches to finding constraints on strongly regular graphs and primitive association schemes. Delaunay triangulations provide an important tool for analysis of sphere packings and coverings; the PI and co-PI intend to extend known results to a larger set of point configurations and to find new all-dimensional functionals for which a Delaunay triangulation is always optimal.
这个建议是专门的问题,球包装在度量空间,其他点的分配,以及相关的组合对象。通过在美国和国外举行的会议和座谈会介绍研究结果,将扩大对这些主题的讨论,并激发进一步的发展。 同样,研究人员希望为下一代数学家提供信息并激励他们进行自己的相关研究的教育目标做出贡献。研究人员将采用两种主要方法分析极值点分配。堵塞或不可约图的方法可以追溯到Schutte和货车der Waerden,Fejes Toth和Danzer,并且与刚性理论直接相关。正定约束的方法,已被用来分析点的配置的属性,并得出其大小的界限,依赖于经典的著作勋伯格,博克纳,和Delsarte。PI和co-PI旨在解决n大于13时的Tammes问题,对二维球面上的不可约图进行分类,并描述其他表面(包括n大于8的正方形平坦环面)和更高维度上的最佳球面填充。研究人员还将尝试量化正定松弛对点集描述的影响以及已知Delsarte界对代码的准确性。通过对少距离集的分析,PI和co-PI将为经典的组合问题提供新的工具;而在研究此类集时使用的几何思想可能会导致找到强正则图和原始关联方案的约束的新方法。Delaunay三角剖分为分析球体填充和覆盖提供了重要工具; PI和co-PI旨在将已知结果扩展到更大的点配置集,并找到Delaunay三角剖分始终是最佳的新的全维泛函。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oleg Musin其他文献
A second homotopy group for digital images
- DOI:
10.1007/s10801-024-01352-9 - 发表时间:
2024-08-22 - 期刊:
- 影响因子:0.900
- 作者:
Gregory Lupton;Oleg Musin;Nicholas A. Scoville;P. Christopher Staecker;Jonathan Treviño-Marroquín - 通讯作者:
Jonathan Treviño-Marroquín
Oleg Musin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oleg Musin', 18)}}的其他基金
Conferences on Discrete Geometry and Algebraic Combinatorics
离散几何和代数组合学会议
- 批准号:
1623600 - 财政年份:2016
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Positive definite functions in distance geometry and combinatorics
合作研究:距离几何和组合学中的正定函数
- 批准号:
1101688 - 财政年份:2011
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Multivariate positive definite polynomials and their applications via SDP
合作研究:多元正定多项式及其通过 SDP 的应用
- 批准号:
0807640 - 财政年份:2008
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
相似海外基金
Complex multiangular line systems and sphere packings
复杂的多角线系统和球体填料
- 批准号:
24K06829 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Renormalization and Visualization for packings, billiards and surfaces
会议:包装、台球和表面的重整化和可视化
- 批准号:
2333366 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Computational complexity of combinatorial problems: graph homomorphisms, packings, and good characterizations
组合问题的计算复杂性:图同态、打包和良好的表征
- 批准号:
RGPIN-2014-04760 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity of combinatorial problems: graph homomorphisms, packings, and good characterizations
组合问题的计算复杂性:图同态、打包和良好的表征
- 批准号:
RGPIN-2014-04760 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
Packings and structural graph theory
填料和结构图论
- 批准号:
532637-2019 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Postgraduate Scholarships - Doctoral
Computational complexity of combinatorial problems: graph homomorphisms, packings, and good characterizations
组合问题的计算复杂性:图同态、打包和良好的表征
- 批准号:
RGPIN-2014-04760 - 财政年份:2020
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
Computational complexity of combinatorial problems: graph homomorphisms, packings, and good characterizations
组合问题的计算复杂性:图同态、打包和良好的表征
- 批准号:
RGPIN-2014-04760 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual
Packings and structural graph theory
填料和结构图论
- 批准号:
532637-2019 - 财政年份:2019
- 资助金额:
$ 16万 - 项目类别:
Postgraduate Scholarships - Doctoral
Computational complexity of combinatorial problems: graph homomorphisms, packings, and good characterizations
组合问题的计算复杂性:图同态、打包和良好的表征
- 批准号:
RGPIN-2014-04760 - 财政年份:2018
- 资助金额:
$ 16万 - 项目类别:
Discovery Grants Program - Individual