RUI: Numerical Simulations of Black Holes, Neutron Stars and Gravitational Radiation
RUI:黑洞、中子星和引力辐射的数值模拟
基本信息
- 批准号:1402780
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Einstein's theory of general relativity describes all gravitational interactions in the universe, ranging from the force that pulls a falling apple to the Earth, to the expansion of the Universe itself. The equations of general relativity - called Einstein's equations - are sufficiently complex so that they can be solved exactly only under very special circumstances. To understand the merger of two black holes, for example, and to predict the signals that we hope to observe soon with the LIGO gravitational wave observatory, requires computer simulations. This award supports research efforts aimed at developing methods and approaches for such computer simulations. In particular, the focus is on methods that are well suited for the self-consistent treatment of the gravitational forces in supernova explosions. These extremely energetic explosions play an important role in the evolution of the universe, even the development of life, lead to the formation of black holes or neutron stars, and yet we still lack a detailed understanding of the explosion mechanism. The scientific goals of this research effort in numerical relativity include the development and implementation of numerical algorithms for the solution of Einstein's equations of general relativity, as well as their application in the numerical modeling of relativistic objects, in particular neutron stars and black holes. The focus of this work is methods in spherical polar coordinates, which have distinct advantages over Cartesian coordinates for many applications, including gravitational collapse, accretion disks, and supernova calculations. This is done in collaboration with colleagues at the Max-Planck-Institute for Astrophysics in Garching, Germany, on including these methods in relativistic astrophysics simulations with a state-of-the-art treatment of microphysical phenomena. Among the long-term goals are supernova simulations that adopt both these advanced microphysics methods and a self-consistent treatment of relativistic gravitational fields. These results will advance our understanding of these processes and will predict their observational signatures in neutrino, electromagnetic and gravitational wave signals. The latter will be important for the new generation of gravitational wave laser interferometers, including the Laser Interferometer Gravitational wave Observatory (LIGO).
爱因斯坦的广义相对论描述了宇宙中所有的引力相互作用,从将掉落的苹果拉向地球的力,到宇宙本身的膨胀。 广义相对论的方程--爱因斯坦方程--非常复杂,只有在非常特殊的情况下才能精确求解。 例如,为了理解两个黑洞的合并,并预测我们希望很快通过LIGO引力波天文台观测到的信号,需要计算机模拟。 该奖项支持旨在开发此类计算机模拟方法和途径的研究工作。 特别是,重点是非常适合于超新星爆炸的引力自洽治疗的方法。 这些能量极高的爆炸在宇宙演化甚至生命的发展中起着重要作用,导致黑洞或中子星的形成,但我们仍然缺乏对爆炸机制的详细了解。 这一数值相对论研究工作的科学目标包括开发和实施求解爱因斯坦广义相对论方程的数值算法,以及将其应用于相对论物体,特别是中子星和黑洞的数值建模。 这项工作的重点是在球极坐标的方法,它有明显的优势,在笛卡尔坐标的许多应用,包括引力坍缩,吸积盘,超新星计算。 这项工作是与德国加尔兴的马克斯-普朗克天体物理研究所的同事合作进行的,目的是将这些方法纳入相对论天体物理模拟,并对微观物理现象进行最先进的处理。 长期目标之一是超新星模拟,采用这些先进的微观物理方法和相对论引力场的自洽处理。 这些结果将推进我们对这些过程的理解,并将预测它们在中微子,电磁波和引力波信号中的观测特征。 后者对于新一代引力波激光干涉仪,包括激光干涉仪引力波天文台(LIGO)将是重要的。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aspherical deformations of the Choptuik spacetime
Choptuik 时空的非球面变形
- DOI:10.1103/physrevd.98.084012
- 发表时间:2018
- 期刊:
- 影响因子:5
- 作者:Baumgarte, Thomas W.
- 通讯作者:Baumgarte, Thomas W.
Critical collapse of ultrarelativistic fluids: Damping or growth of aspherical deformations
- DOI:10.1103/physrevd.98.024053
- 发表时间:2018-05
- 期刊:
- 影响因子:5
- 作者:Juliana Celestino;T. Baumgarte
- 通讯作者:Juliana Celestino;T. Baumgarte
Numerical relativity in spherical coordinates with the Einstein Toolkit
使用 Einstein 工具包研究球坐标中的数值相对论
- DOI:10.1103/physrevd.97.084059
- 发表时间:2018
- 期刊:
- 影响因子:5
- 作者:Mewes, Vassilios;Zlochower, Yosef;Campanelli, Manuela;Ruchlin, Ian;Etienne, Zachariah B.;Baumgarte, Thomas W.
- 通讯作者:Baumgarte, Thomas W.
Schwarzschild–de Sitter spacetimes, McVittie coordinates, and trumpet geometries
史瓦西-德西特时空、麦克维蒂坐标和喇叭几何
- DOI:10.1103/physrevd.96.124014
- 发表时间:2017
- 期刊:
- 影响因子:5
- 作者:Dennison, Kenneth A.;Baumgarte, Thomas W.
- 通讯作者:Baumgarte, Thomas W.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Baumgarte其他文献
Thomas Baumgarte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Baumgarte', 18)}}的其他基金
RUI: Studies in Numerical Relativity
RUI:数值相对论研究
- 批准号:
2308821 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
RUI: WoU-MMA: Studies in Numerical Relativity
RUI:WoU-MMA:数值相对论研究
- 批准号:
2010394 - 财政年份:2020
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
RUI: Studies in Numerical Relativity
RUI:数值相对论研究
- 批准号:
1707526 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
RUI: Numerical Simulations of Black Holes, Neutron Stars and Gravitational Radiation
RUI:黑洞、中子星和引力辐射的数值模拟
- 批准号:
1063240 - 财政年份:2011
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
RUI: Numerical Simulations of Neutron Stars, Black Holes and Gravitational Radiation
RUI:中子星、黑洞和引力辐射的数值模拟
- 批准号:
0756514 - 财政年份:2008
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
RUI: Numerical Simulations of Neutron Stars, Black Holes and Gravitational Radiation
RUI:中子星、黑洞和引力辐射的数值模拟
- 批准号:
0456917 - 财政年份:2005
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
RUI: Numerical Simulations of Neutron Stars, Black Holes and Gravitational Radiation
RUI:中子星、黑洞和引力辐射的数值模拟
- 批准号:
0139907 - 财政年份:2002
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
相似海外基金
Numerical simulations of lattice field theory
晶格场论的数值模拟
- 批准号:
2902259 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Studentship
CAREER: High fidelity numerical simulations of turbulent flow separation at high Reynolds numbers with passive scalar transport.
职业:采用被动标量传输的高雷诺数湍流分离的高保真度数值模拟。
- 批准号:
2314303 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
- 批准号:
2308090 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319535 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Direct numerical simulations of droplet break-up in turbulence in inertial and viscous regimes
惯性和粘性状态下湍流中液滴破裂的直接数值模拟
- 批准号:
2242512 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
- 批准号:
2319536 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Development of a stable and accurate numerical scheme for ideal magnetohydrodynamics simulations
为理想的磁流体动力学模拟开发稳定且准确的数值方案
- 批准号:
23KJ0986 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Improvement of the debris flow prediction by developing topographic surveys and numerical simulations
通过开展地形调查和数值模拟改进泥石流预测
- 批准号:
23H02250 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exploring the origin of binary star parameters using high-resolution numerical simulations
使用高分辨率数值模拟探索双星参数的起源
- 批准号:
23K03464 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




