The Rise of the Boson-Sampling Quantum Computer and The Renaissance of the Linear Optical Quantum Interferometer
玻色子采样量子计算机的兴起和线性光学量子干涉仪的复兴
基本信息
- 批准号:1403105
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the twenty year long race to build the first quantum computer a number of physical hardware platforms for such a computer have been investigated including semiconductor circuits, superconducting circuits, charged ionic atoms manipulated in electromagnetic chips, and neutral atoms controlled with lasers. One approach that has lagged behind is the design of a quantum information processor that uses quantum states of light or photons. This is because it is difficult to get photons to interact or 'talk' to each other, a primary requirement in making quantum-computing elements such as transistors. Prior to 2010, photon-based quantum computer circuit designs had a huge overhead in the ancillary quantum and classical circuitry required to build even a simple two-photon transistor. In some of the early designs, tens of thousands of ancillary optical networks and electronic switches were required to construct even a single photon transistor. In 2010 Aaronson Arkhipov at MIT showed that much simpler optical circuit 'a linear optical interferometer' constructed with just a few photons, lenses, mirrors, and other simple optical elements, could be used to solve a particularly hard mathematical problem with an exponential increase in processing power over any classical computer. Since then some five experiments on this new type of optical quantum computer have been carried out worldwide. For this project different circuit designs of this new type of simple optical computer will be investigated and a search for additional mathematical problems that it might be able to solve will be carried out. In addition the possibility of using such a simple optical machine for making imaging devices such as microscopes, or sensors such as magnetic field sensors, that operate with more resolution, precision, and accuracy than is possible classically will be investigated. The great intellectual merit of this project is that it is at the interface of quantum imaging, sensing, and information processing all within the field of quantum metrology. The language of quantum information provides an exciting tool such that problems in one of these fields can be viewed using tools developed in another. Hence any advance in one subfield can almost immediately be applied, with creativity and work, to another subfield. The work is synergistic across all the subfields. All the graduate and undergraduate students involved in this project will be trained in the foundations of quantum mechanics, quantum information theory, quantum optics, and AMO theory. The power of multimode, passive, linear optical interferometers for quantum computation, imaging, and sensing will have broad cross-disciplinary commercial, governmental, and scientific impact.Linear optical interferometers have been thought to be unsuitable for quantum information processing. While nonlinear interferometers provide a route to scalable and universal quantum computation, the strong optical nonlinearities required to implement such schemes have been difficult to attain. Even the so-called linear optical quantum computing (LOQC) scheme proposed by Knill, Laflamme, and Milburn (KLM) has effective nonlinearities that are generated by the detection and feed-forward processes. The KLM scheme has also proved daunting from a technological standpoint due to the immense number of ancilla resources required per logical gate. It thus came as a surprise to the quantum optics community when Aaronson and Arkhipov (AA) proposed that passive linear optical interferometers with single photon inputs could efficiently solve a type of computational sampling problem, a problem that is likely intractable on a classical or even a universal quantum computer. This result has let to a flurry of recent experiments. Dowling's group was led to a similar conclusion as that of AA in the study of quantum random walks in linear optical interferometers with multiphoton Fock-state inputs. Taken together, these new results indicate that simple linear optical devices contain a hitherto overlooked computational capability that has only yet begun to be explored. LSU has begun an investigation of the computational complexity of such devices from a quantum optics point of view using the standard theoretical tools for describing the propagation of quantum states of lights through linear interferometers. In addition to providing an elementary quantum optical argument for the complexity of the devices with Fock-state inputs, it has been shown that spontaneous parametric down conversion photon sources are a scalable resource for boson sampling and that there is very likely a computational complexity associated with the number sampling of linear optical interferometers with superpositions of coherent 'generalized cat' states. The following tasks will be carried out: (1) investigate the computational complexity of boson sampling in the number basis with non-Gaussian state inputs such as photon added and subtracted Gaussian states; (2) carry out a realistic resource analysis of what is required in practice to develop a large-scale 'post-classical' linear optical quantum information processor; (3) investigate the computational complexity non-Gaussian (number-resolved) sampling with Gaussian inputs; (4) numerically design and test a small-scale programmable post-classical quantum information processor; (5) investigate the performance of linear optical interferometers for the purposes of quantum metrology including optical sensing and imaging.
在建造第一台量子计算机的长达20年的竞赛中,已经研究了许多用于这种计算机的物理硬件平台,包括半导体电路,超导电路,在电磁芯片中操纵的带电离子原子,以及用激光控制的中性原子。一种落后的方法是设计一种使用光或光子量子态的量子信息处理器。这是因为很难让光子相互作用或“交谈”,而这是制造晶体管等量子计算元件的基本要求。在2010年之前,基于光子的量子计算机电路设计在构建简单的双光子晶体管所需的辅助量子和经典电路中具有巨大的开销。在一些早期的设计中,甚至需要数万个辅助光学网络和电子开关来构建单个光子晶体管。2010年,麻省理工学院的Aaronson Arkhipov展示了一种简单得多的光学电路,即由几个光子、透镜、镜子和其他简单光学元件构成的线性光学干涉仪,可以用来解决一个特别困难的数学问题,其处理能力比任何经典计算机都要指数级增长。从那时起,这种新型光量子计算机在世界范围内进行了大约五次实验。对于该项目,将研究这种新型简单光学计算机的不同电路设计,并寻找它可能能够解决的其他数学问题。此外,将研究使用这种简单的光学机器来制造成像设备(例如显微镜)或传感器(例如磁场传感器)的可能性,这些成像设备以比传统可能的分辨率、精度和准确度更高的分辨率、精度和准确度工作。 该项目的巨大智力价值在于它处于量子成像,传感和信息处理的界面,所有这些都在量子计量学领域内。量子信息的语言提供了一个令人兴奋的工具,使得这些领域之一的问题可以使用另一个领域开发的工具来查看。因此,一个领域的任何进展几乎可以立即应用于另一个领域,通过创造性和工作。这项工作在所有分领域都是协同的。 所有参与该项目的研究生和本科生将接受量子力学,量子信息理论,量子光学和AMO理论的基础培训。用于量子计算、成像和传感的多模、无源、线性光学干涉仪的功率将具有广泛的跨学科商业、政府和科学影响。线性光学干涉仪一直被认为不适合量子信息处理。虽然非线性干涉仪提供了一条通往可扩展和通用量子计算的途径,但实现这种方案所需的强光学非线性一直难以实现。即使是Knill,Laflamme和Milburn(KLM)提出的所谓线性光量子计算(LOQC)方案也具有由检测和前馈过程产生的有效非线性。从技术角度来看,荷航方案也被证明是令人生畏的,因为每个逻辑门需要大量的辅助资源。因此,当Aaronson和Arkhipov(AA)提出具有单光子输入的无源线性光学干涉仪可以有效地解决一类计算采样问题时,量子光学界感到惊讶,这是一个在经典甚至通用量子计算机上可能难以解决的问题。这一结果引发了最近的一系列实验。道林的小组在研究具有多光子福克态输入的线性光学干涉仪中的量子随机游走时得出了与AA类似的结论。总的来说,这些新的结果表明,简单的线性光学器件包含迄今为止被忽视的计算能力,这只是刚刚开始探索。路易斯安那州立大学已经开始从量子光学的角度使用标准的理论工具来描述光的量子态通过线性干涉仪的传播的计算复杂性的调查这样的设备。除了为具有Fock状态输入的设备的复杂性提供基本量子光学参数之外,已经表明自发参数下转换光子源是玻色子采样的可扩展资源,并且很可能存在与具有相干“广义猫”状态的叠加的线性光学干涉仪的数量采样相关联的计算复杂性。本论文的主要任务是:(1)研究在非高斯态输入(如加光子和减光子的高斯态)下的玻色子采样的计算复杂性;(2)对研制大规模“后经典”线性光量子信息处理器的实际需求进行现实的资源分析;(3)研究非高斯分布的计算复杂度(4)数值设计并测试了一个小规模可编程后经典量子信息处理器;(5)研究线性光学干涉仪的性能,用于量子计量学,包括光学传感和成像。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Dowling其他文献
Signal integrity analysis of bus turn-around on a DDR3 SDRAM memory channel
- DOI:
10.1109/epeps.2010.5642535 - 发表时间:
2010-11 - 期刊:
- 影响因子:0
- 作者:
Jonathan Dowling - 通讯作者:
Jonathan Dowling
Jonathan Dowling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Dowling', 18)}}的其他基金
Quantum Optical and Atomic Interferometry
量子光学和原子干涉测量
- 批准号:
0968895 - 财政年份:2010
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
Workshop on Quantum, Molecular and High Performance Modeling and Simulation for Devices and Systems. The Workshop will be held April 16-17, 2007 at NSF in Arlington, VA Room 375.
设备和系统的量子、分子和高性能建模与仿真研讨会。
- 批准号:
0732866 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
Search for the Dimuon decay of the Standard Model Higgs Boson using ATLAS
使用 ATLAS 搜索标准模型希格斯玻色子的 Dimuon 衰变
- 批准号:
2907975 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Studentship
REAGAN - Real-life applications with Gaussian boson sampling
REAGAN - 高斯玻色子采样的现实应用
- 批准号:
EP/Y029631/1 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Fellowship
Searching for Higgs Boson Pair Production with the ATLAS Experiment at the CERN LHC
通过 CERN LHC 的 ATLAS 实验寻找希格斯玻色子对的产生
- 批准号:
2887509 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
Closing in on the one-dimensional Efimov effect through boson-fermion duality
通过玻色子-费米子对偶性接近一维 Efimov 效应
- 批准号:
23K03267 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Measurement of the W boson mass with the ATLAS detector
使用 ATLAS 探测器测量 W 玻色子质量
- 批准号:
2881036 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
Measuring the Higgs Boson Self-Coupling with ATLAS
使用 ATLAS 测量希格斯玻色子自耦合
- 批准号:
2881436 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
Search for TeV-scale dark matter particles using the Higgs boson as a probe
使用希格斯玻色子作为探针搜索 TeV 尺度的暗物质粒子
- 批准号:
23K13114 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of the precision of b-jet property measurements with neural network and precise measurement of Higgs boson deploying the developed b-jet analysis
利用神经网络开发精确的 b 射流特性测量,并利用所开发的 b 射流分析精确测量希格斯玻色子
- 批准号:
23KJ0400 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Boson Sampling and Quantum Imaging for Complex Biological Systems
复杂生物系统的玻色子采样和量子成像
- 批准号:
EP/Y029097/1 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Research Grant
Measurements of observables sensitive to CP-violation in weak-boson self-interactions
弱玻色子自相互作用中对 CP 破坏敏感的可观测量的测量
- 批准号:
2829483 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship