Fundamental Investigation of Particle-Driven Sweep Convection

粒子驱动扫掠对流的基础研究

基本信息

  • 批准号:
    1404017
  • 负责人:
  • 金额:
    $ 30.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

CBET-1404017Lage (Southern Methodist University)Technological advances in small scale devices are hindered by the need for more efficient heat exchanging mechanisms. The design, characterization and control operation of potentially ultra-efficient, particle-driven micro-convection devices, the objective of this study, will have strong economic impact in several industries, e.g. electronics, aerospace, automotive, and energy. Recent technological advances for building small flow channels and particles, which are explored in this project, points toward the potential scalability of the proposed approach from macro- down to micro- and nano-scale applications, making this study relevant to heat and mass transfer equipment not only in mature but also in many emerging industries, such as fuel-cells, micro-engines, micro-chemical reactors, and bio- and space-sensors. Analytical, numerical and experimental efforts will be combined to provide insight and knowledge of this new approach, critical in determining its suitability for diverse applications. This is an essential study for gaining fundamental insight of new thermo-hydraulic effects resulting from the proposed use of small particles in convection. This project will also boost the awareness of young under-represented and under-served girls, many of Latino origin, about STEM careers. The development of a new Micro-Thermal Devices course with a collaborative, research-driven international study abroad program is planned, as well as a new web portal for disseminating the work on micro-thermo-fluidics.The standard modern approach to using small (micro- and nano-scale) solid particles in convection equipment begins by mixing the particles with a base fluid to form fluid-solid (slurry) mixtures. The present project aims at transforming this standard approach by investigating the use of these mixtures in channels with flow passage similar to the particle size. This new approach has been bio-inspired by the study of gas transfer in alveolar capillaries, where red blood cell particles (RBCs) flow through capillaries having flow passage similar to the RBC size. In this case, each particle becomes a discrete component of the mixture, possibly sweeping the convection boundary layers as they flow through a channel. The proposed work on parallel-plates and capillary channels, with particles of different sizes (different particle-channel gaps), provides a drawing board for developing a fundamental design tool for microdevices, where high heat transfer coefficient must be weighed against potential pressure-drop penalty. Another advantageous effect of the new approach is the possibility of controlling the particle's thermo-hydraulic effects by simply varying the number of particles flowing through the channel, which can be done easily on-the-fly. This aspect, which would be fundamental for devices with time-varying thermo-hydraulic loads, will also be investigated in this study. Analytical, numerical and experimental efforts will be combined to provide insight and knowledge of the convection and rheological behaviors of this new approach, critical in determining its suitability for diverse applications. This is a foundational study, essential also for building experimental and numerical data-banks for validating and optimizing predictive analytical models.
CBET-1404017 Lage(Southern Methodist University)小型设备的技术进步受到对更有效的热交换机制的需求的阻碍。潜在的超高效,颗粒驱动的微对流装置的设计,表征和控制操作,本研究的目的,将在几个行业,如电子,航空航天,汽车和能源具有强大的经济影响。最近的技术进步,建立小的流动通道和颗粒,这是在这个项目中探索,指向潜在的可扩展性的建议的方法,从宏观到微观和纳米尺度的应用,使这项研究相关的传热传质设备不仅在成熟的,而且在许多新兴行业,如燃料电池,微型发动机,微型化学反应器,生物和空间传感器。分析,数值和实验的努力将结合起来,提供这种新方法的见解和知识,在确定其适用于不同的应用程序的关键。这是一个必要的研究,获得新的热工水力效应的基本见解,所提出的使用小颗粒对流。该项目还将提高代表性不足和服务不足的年轻女孩(其中许多是拉丁裔)对STEM职业的认识。计划开发一个新的微热器件课程,该课程是一个合作的、研究驱动的国际留学项目,以及一个新的门户网站,用于传播微热流体学的工作。在对流设备中使用小(微米和纳米尺度)固体颗粒的标准现代方法首先将颗粒与基础流体混合,形成流体-固体(浆料)混合物。本项目旨在通过研究这些混合物在具有与颗粒尺寸相似的流道的通道中的使用来改变这种标准方法。这种新方法受到肺泡毛细血管中气体转移研究的生物启发,其中红细胞颗粒(RBC)流过具有与RBC大小相似的流动通道的毛细血管。在这种情况下,每个颗粒成为混合物的离散组分,当它们流过通道时,可能会扫过对流边界层。平行板和毛细管通道,不同尺寸的颗粒(不同的颗粒通道间隙)的拟议工作,提供了一个绘图板开发一个基本的设计工具的微型器件,高传热系数必须权衡对潜在的压降处罚。新方法的另一个有利效果是可以通过简单地改变流过通道的颗粒的数量来控制颗粒的热工水力效应,这可以很容易地在运行中完成。这方面,这将是随时间变化的热液压负载的设备的基本,也将在这项研究中进行调查。分析,数值和实验的努力将结合起来,提供这种新方法的对流和流变行为的洞察力和知识,在确定其适用于不同的应用程序的关键。这是一项基础性研究,对于建立实验和数值数据库以验证和优化预测分析模型也至关重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ali Beskok其他文献

Molecular dynamics simulation of thermal conductivity of GaN
氮化镓热导率的分子动力学模拟
Decorin Expression, Straw-like Structure, and Differentiation of Human Costal Cartilage
人肋软骨的核心蛋白聚糖表达、吸管样结构和分化
  • DOI:
    10.3109/03008207.2012.684113
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Michael W. Stacey;J. Grubbs;Anthony J. Asmar;J. Pryor;H. Elsayed;Wei Cao;Ali Beskok;Diganta Dutta;D. Darby;Annie H. Fecteau;A. Werner;Robert E. Kelly
  • 通讯作者:
    Robert E. Kelly
Microfluidic Dielectric Spectroscopy of Costal Cartilage Chondrocytes
  • DOI:
    10.1016/j.bpj.2012.11.3724
  • 发表时间:
    2013-01-29
  • 期刊:
  • 影响因子:
  • 作者:
    Ahmet Can Sabuncu;Michael W. Stacey;Ali Beskok
  • 通讯作者:
    Ali Beskok

Ali Beskok的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ali Beskok', 18)}}的其他基金

Collaborative Research: Investigation of Anomalous Transport Phenomena During Evaporation from Nano-Engineered Surfaces
合作研究:纳米工程表面蒸发过程中异常输运现象的研究
  • 批准号:
    2042239
  • 财政年份:
    2021
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Workshop on Exuberance of Machine Learning in Transport Phenomena
合作研究:机器学习在交通现象中的丰富性研讨会
  • 批准号:
    1940134
  • 财政年份:
    2020
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Standard Grant
Interface Resistance and Thermal Transport in Nano-Scale Confined Liquids
纳米级受限液体中的界面电阻和热传输
  • 批准号:
    0931988
  • 财政年份:
    2010
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Standard Grant
A Nonconforming Spectral Element Method for Electroosmotically Induced Microfluidic Mixing
电渗诱导微流体混合的非一致谱元方法
  • 批准号:
    0722169
  • 财政年份:
    2007
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Standard Grant
A Nonconforming Spectral Element Method for Electroosmotically Induced Microfluidic Mixing
电渗诱导微流体混合的非一致谱元方法
  • 批准号:
    0306622
  • 财政年份:
    2003
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Standard Grant

相似海外基金

Comprehensive elucidation of the film growth and bonding mechanisms of ceramic coatings on different substrate materials via single particle investigation
通过单颗粒研究全面阐明陶瓷涂层在不同基材材料上的薄膜生长和结合机制
  • 批准号:
    23K04443
  • 财政年份:
    2023
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation on nonlinear response mechanisms through direct simultaneous measurement of flow field and stress field in dense particle suspension
通过直接同时测量致密颗粒悬浮液中的流场和应力场研究非线性响应机制
  • 批准号:
    23K17729
  • 财政年份:
    2023
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Single-particle investigation of the behavior of lead halide perovskite in solution
卤化铅钙钛矿在溶液中行为的单粒子研究
  • 批准号:
    23K13629
  • 财政年份:
    2023
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Investigation of spatio-temporal characteristics of triple elliptical nozzles using time-resolved tomographic particle image velocimetry
利用时间分辨断层粒子图像测速技术研究三椭圆形喷嘴的时空特性
  • 批准号:
    547831-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Investigation of Cosmic-ray Particle Acceleration Mechanism and Maximum Energy by Galactic X-ray Binary Jets
银河X射线双射流研究宇宙射线粒子加速机制和最大能量
  • 批准号:
    22K20386
  • 财政年份:
    2022
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Investigation of Asymmetric Free and Confined Three-dimensional Turbulent Jets using Time-Resolved Tomographic Particle Image Velocimetry
使用时间分辨断层粒子图像测速研究不对称自由和受限三维湍流射流
  • 批准号:
    RGPIN-2017-04957
  • 财政年份:
    2022
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Discovery Grants Program - Individual
Fabrication and investigation of nano particle, fibre and nanotube multiscale reinforced aluminium matrix composites
纳米颗粒、纤维和纳米管多尺度增强铝基复合材料的制备与研究
  • 批准号:
    RGPIN-2019-05054
  • 财政年份:
    2022
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Discovery Grants Program - Individual
Acquisition of Flow Total Internal Reflection Fluorescence Video Microscopy System to Support Investigation of Nano- and Micro-Particle Transport and Surface Interaction
采集流全内反射荧光视频显微镜系统以支持纳米和微米颗粒传输和表面相互作用的研究
  • 批准号:
    2141193
  • 财政年份:
    2022
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Standard Grant
Theoretical and numerical investigation of particle-vortex interaction in semi-dilute dusty flows
半稀尘流中粒子-涡相互作用的理论与数值研究
  • 批准号:
    2148710
  • 财政年份:
    2022
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Standard Grant
Fabrication and investigation of nano particle, fibre and nanotube multiscale reinforced aluminium matrix composites
纳米粒子、纤维和纳米管多尺度增强铝基复合材料的制备与研究
  • 批准号:
    RGPIN-2019-05054
  • 财政年份:
    2021
  • 资助金额:
    $ 30.32万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了