ACME: Advanced Cold Molecule Electron Electric Dipole Moment Search
ACME:高级冷分子电子电偶极矩搜索
基本信息
- 批准号:1404146
- 负责人:
- 金额:$ 310.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of this project is to search for a new fundamental property of the electron, one of the main constituents of matter and a charged component of all atoms. This new property, called an electric dipole moment, can be described as a slight bulge on an otherwise perfect sphere of charge. This seemingly abstruse property may hold the key to one of the most fundamental mysteries of nature: why is everything in the universe made of matter rather than of antimatter? In accelerator laboratories, whenever energy is converted into particles (according to E=mc2), equal numbers of matter particles and antimatter particles are created. For example, the electron has a counterpart antimatter particle, the anti-electron, which has identical mass but opposite electric charge. Energy can be converted into an electron/anti-electron pair, and conversely an electron and anti-electron can annihilate each other and turn into energy. Just after the Big Bang, energy was converted into particles and anti-particles. Astronomical observations show that since then, essentially all the antimatter annihilated with matter--but a tiny bit of matter was left over. That small excess makes up all of the objects seen in the Universe today. The current framework that describes all known fundamental forces between elementary particles, known as the "Standard Model", cannot explain how this excess of matter survived. However, many mathematical theories have been devised that can explain this "matter-antimatter asymmetry", by positing new forces and particles not yet discovered in any experiment. These same new forces and particles also often lead, according to the same theories, to an electric dipole moment that is large enough to observe in the experiment supported here. Hence, this project is essentially seeking an answer to the question: how is it that matter was slightly preferred over anti-matter at some time in the past, resulting in the physical Universe seen today? In a general sense, this project also advances the range of techniques for precision measurement science, which in the past has led to unexpected breakthroughs in technology such as GPS (the Global Positioning System), new types of sensors, etc. The electric dipole moment (EDM), if it exists, must lie along the spin axis of the electron. In the presence of a nonzero EDM, an electric field will induce a torque on the electron, resulting in precession of the spin about the field. This spin precession angle is the experimental signal. The huge internal electric field of a polar molecule, ThO, is used to amplify this observable effect. The internal structure of ThO also suppresses possible systematic errors. A cryogenic molecular beam source that delivers an unprecedented high flux of molecules is used. Lasers and optical techniques put the ThO molecules in usable coherent superpositions and then probe the quantum interference that signals the electron's spin precession. Over the previous grant period, an initial version of these methods was used to make by far the most sensitive measurement of the electron's EDM. This result was consistent with a zero value for the EDM, but many theories of what lies beyond the Standard Model of particle physics predict that, with improved sensitivity, detection of the EDM is likely. In this project, methods to greatly improve the sensitivity of the experiment will be introduced; these include focusing of the molecular beam and a use of a more efficient process for state preparation, based on adiabatic passage. Improvements such as the use of low-absorption optical elements will reduce systematic errors observed in the previous experiment.
这个项目的目标是寻找电子的一个新的基本性质,电子是物质的主要成分之一,也是所有原子的带电成分。这种新的性质,称为电偶极矩,可以被描述为一个轻微的凸起,否则完美的电荷球。这个看似深奥的性质可能是自然界最基本的奥秘之一的关键:为什么宇宙中的一切都是由物质而不是反物质组成的? 在加速器实验室中,每当能量转换成粒子时(根据E= mc 2),就会产生相等数量的物质粒子和反物质粒子。例如,电子有一个对应的反物质粒子,反电子,它有相同的质量,但相反的电荷。 能量可以转化为电子/反电子对,相反,电子和反电子可以相互湮灭并转化为能量。在大爆炸之后,能量转化为粒子和反粒子。天文观测表明,从那时起,基本上所有的反物质都与物质湮灭了--但留下了一点点物质。 这一小部分构成了今天在宇宙中看到的所有物体。目前描述基本粒子之间所有已知基本力的框架,即所谓的“标准模型”,无法解释这种过剩的物质是如何存活下来的。然而,许多数学理论已经被设计出来,可以解释这种“物质-反物质不对称性”,通过假定新的力和粒子尚未在任何实验中发现。根据相同的理论,这些新的力和粒子也经常导致一个电偶极矩,这个电偶极矩足够大,可以在这里支持的实验中观察到。 因此,这个项目本质上是在寻找这个问题的答案:在过去的某个时候,物质是如何比反物质稍微优先的,导致了今天看到的物理宇宙?从一般意义上说,该项目还推进了精密测量科学的技术范围,这在过去导致了GPS(全球定位系统),新型传感器等技术的意外突破。 电偶极矩(EDM)如果存在的话,一定是沿着电子的自旋轴,如果EDM不为零,电场会在电子上产生一个力矩,导致电子的自旋绕电场发生旋进。该自旋进动角是实验信号。极性分子ThO的巨大内部电场被用来放大这种可观察到的效应。ThO的内部结构也抑制了可能的系统误差。一个低温分子束源,提供了前所未有的高通量的分子使用。激光和光学技术将ThO分子置于可用的相干叠加态,然后探测发出电子自旋进动信号的量子干涉。在上一个资助期内,这些方法的初始版本被用来对电子的EDM进行迄今为止最灵敏的测量。这一结果与EDM的零值一致,但许多超越粒子物理学标准模型的理论预测,随着灵敏度的提高,EDM的检测是可能的。在这个项目中,将介绍大大提高实验灵敏度的方法;这些方法包括分子束的聚焦和基于绝热通道的更有效的状态准备过程的使用。 诸如使用低吸收光学元件等改进将减少在先前实验中观察到的系统误差。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David DeMille其他文献
A chilling effect for molecules
分子的致冷效应
- DOI:
10.1038/nature11753 - 发表时间:
2012-11-14 - 期刊:
- 影响因子:48.500
- 作者:
John F. Barry;David DeMille - 通讯作者:
David DeMille
The coldest polar region
最寒冷的极地地区
- DOI:
10.1038/nphys1147 - 发表时间:
2008-12-01 - 期刊:
- 影响因子:18.400
- 作者:
David DeMille;Eric R. Hudson - 通讯作者:
Eric R. Hudson
David DeMille的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David DeMille', 18)}}的其他基金
PM: Development Towards a Tabletop Experiment with Unprecedented Sensitivity to Hadronic CP Violation
PM:对强子 CP 破坏具有前所未有的敏感性的桌面实验的开发
- 批准号:
2208024 - 财政年份:2022
- 资助金额:
$ 310.49万 - 项目类别:
Standard Grant
Collaborative Research: MRI: Development of Apparatus for the Cold Molecule Nuclear Time-Reversal EXperiment (CeNTREX)
合作研究:MRI:冷分子核时间反转实验装置(CeNTREX)的开发
- 批准号:
2240234 - 财政年份:2022
- 资助金额:
$ 310.49万 - 项目类别:
Standard Grant
ACME III: Advanced Cold Molecule Electron Electric Dipole Moment Search
ACME III:高级冷分子电子电偶极矩搜索
- 批准号:
2136573 - 财政年份:2021
- 资助金额:
$ 310.49万 - 项目类别:
Continuing Grant
ACME III: Advanced Cold Molecule Electron Electric Dipole Moment Search
ACME III:高级冷分子电子电偶极矩搜索
- 批准号:
1912513 - 财政年份:2019
- 资助金额:
$ 310.49万 - 项目类别:
Continuing Grant
Collaborative Research: MRI: Development of Apparatus for the Cold Molecule Nuclear Time-Reversal EXperiment (CeNTREX)
合作研究:MRI:冷分子核时间反转实验装置(CeNTREX)的开发
- 批准号:
1827906 - 财政年份:2018
- 资助金额:
$ 310.49万 - 项目类别:
Standard Grant
Nuclear Spin-Dependent Parity Violation in Molecules
分子中核自旋相关的宇称不守恒
- 批准号:
1404162 - 财政年份:2014
- 资助金额:
$ 310.49万 - 项目类别:
Continuing Grant
Nuclear Spin-Dependent Parity Nonconservation in Molecules
分子中核自旋相关的宇称不守恒
- 批准号:
1068575 - 财政年份:2011
- 资助金额:
$ 310.49万 - 项目类别:
Continuing Grant
Search for the Electron Electric Dipole Moment using PbO Molecules
使用 PbO 分子搜索电子电偶极矩
- 批准号:
0855566 - 财政年份:2009
- 资助金额:
$ 310.49万 - 项目类别:
Standard Grant
ACME: Advanced Cold Molecule Electron Electric Dipole Moment Search
ACME:高级冷分子电子电偶极矩搜索
- 批准号:
0855575 - 财政年份:2009
- 资助金额:
$ 310.49万 - 项目类别:
Continuing Grant
Nuclear Spin-Dependent Parity Nonconservation in Molecules
分子中核自旋相关的宇称不守恒
- 批准号:
0758045 - 财政年份:2008
- 资助金额:
$ 310.49万 - 项目类别:
Continuing Grant
相似国自然基金
面向用户体验的IMT-Advanced系统跨层无线资源分配技术研究
- 批准号:61201232
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
LTE-Advanced中继网络关键技术研究
- 批准号:61171096
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
IMT-Advanced协作中继网络中的网络编码研究
- 批准号:61040005
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
面向IMT-Advanced的移动组播关键技术研究
- 批准号:61001071
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于干扰预测的IMT-Advanced多小区干扰抑制技术研究
- 批准号:61001116
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cold Sintering of Advanced Ceramics and Glass along with Natural Sustainable Materials for Bone Tissue Engineering
先进陶瓷和玻璃以及天然可持续材料的冷烧结用于骨组织工程
- 批准号:
2891030 - 财政年份:2023
- 资助金额:
$ 310.49万 - 项目类别:
Studentship
Bulk Electroforming and Cold-Spraying of Advanced High-strength/Corrosion-resistant/Anti-wetting Alloys and Composites
先进高强度/耐腐蚀/抗润湿合金和复合材料的体电铸和冷喷涂
- 批准号:
RGPIN-2022-04461 - 财政年份:2022
- 资助金额:
$ 310.49万 - 项目类别:
Discovery Grants Program - Individual
Advanced seismic force resisting systems for cold-formed steel framed building structures
先进的冷弯型钢框架建筑结构抗震系统
- 批准号:
RGPIN-2019-04782 - 财政年份:2022
- 资助金额:
$ 310.49万 - 项目类别:
Discovery Grants Program - Individual
Advanced Cold Plasma Synthesis of Organic Networks and Molecules
有机网络和分子的先进冷等离子体合成
- 批准号:
RGPIN-2018-06421 - 财政年份:2022
- 资助金额:
$ 310.49万 - 项目类别:
Discovery Grants Program - Individual
An Advanced Research on the Comparative Literary History in the Cold War and Decolonizing Era
冷战与非殖民化时期比较文学史的前沿研究
- 批准号:
22K00493 - 财政年份:2022
- 资助金额:
$ 310.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced seismic force resisting systems for cold-formed steel framed building structures
先进的冷弯型钢框架建筑结构抗震系统
- 批准号:
RGPIN-2019-04782 - 财政年份:2021
- 资助金额:
$ 310.49万 - 项目类别:
Discovery Grants Program - Individual
ACME III: Advanced Cold Molecule Electron Electric Dipole Moment Search
ACME III:高级冷分子电子电偶极矩搜索
- 批准号:
2136573 - 财政年份:2021
- 资助金额:
$ 310.49万 - 项目类别:
Continuing Grant
Advanced Cold Plasma Synthesis of Organic Networks and Molecules
有机网络和分子的先进冷等离子体合成
- 批准号:
RGPIN-2018-06421 - 财政年份:2021
- 资助金额:
$ 310.49万 - 项目类别:
Discovery Grants Program - Individual
Advanced cold plasma technology for the removal of persistent organic pollutants from fresh water
先进的冷等离子体技术用于去除淡水中的持久性有机污染物
- 批准号:
133965 - 财政年份:2020
- 资助金额:
$ 310.49万 - 项目类别:
Knowledge Transfer Network
Advanced seismic force resisting systems for cold-formed steel framed building structures
先进的冷弯型钢框架建筑结构抗震系统
- 批准号:
RGPIN-2019-04782 - 财政年份:2020
- 资助金额:
$ 310.49万 - 项目类别:
Discovery Grants Program - Individual