New Methods for Sequential Monitoring of Longitudinal Patterns

纵向模式顺序监测的新方法

基本信息

  • 批准号:
    1405698
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

In many applications, ranging from disease early detection and prevention, maintenance of airplanes, cars and other durable goods and products, to pollution control and environment monitoring, we need to monitor the longitudinal pattern of certain performance variables of a subject. If the observed values of the performance variables of a given subject are significantly worse than the values of a typical well-functioning subject of the same age, then a signal by a statistical method would be extremely helpful so that some proper adjustments or interventions can be made in a timely manner to avoid any unpleasant consequences. This project aims to develop a new statistical method to handle this problem effectively. If successful, research results from this project will have a profound impact on the applications mentioned above.In the statistical literature, there are two research areas relevant to the above sequential monitoring of longitudinal pattern (SMLP) problem: longitudinal data analysis (LDA) and statistical process control (SPC). By an LDA method, we can compare a new subject with a group of well-functioning subjects to judge whether the new subject's longitudinal pattern is consistent with the regular pattern in a given time interval. One limitation of the LDA methods is that they cannot make a decision about a subject's longitudinal pattern sequentially and quickly even when all available observations up to the current time point have provided enough evidence to support the decision. For solving the SMLP problem effectively, however, this dynamic decision-making feature is crucial. By a SPC method, we can follow each subject sequentially, and make a decision about its performance by comparing its observations at the current time point with all of its history data. One major limitation of the SPC methods is that they cannot compare different subjects when making decisions about a given subject. Therefore, there are no existing statistical methods that can solve the SMLP problem effectively yet. This project proposes a new method that makes decisions about the longitudinal pattern of a subject by comparing it with other subjects cross-sectionally and by using all its history data as well with a sequential monitoring scheme. The new method combines the major strengths of the LDA and SPC methods and should provide an effective solution to the SMLP problem.
在许多应用中,从疾病的早期检测和预防,飞机、汽车和其他耐用品和产品的维护,到污染控制和环境监测,我们需要监测对象的某些性能变量的纵向模式。如果给定受试者的表现变量的观察值显著差于相同年龄的典型功能良好受试者的值,则通过统计方法的信号将是非常有帮助的,使得可以及时地进行一些适当的调整或干预以避免任何不愉快的后果。本项目旨在开发一种新的统计方法来有效地处理这一问题。在统计学文献中,有两个研究领域与上述纵向模式的顺序监测(SMLP)问题相关:纵向数据分析(LDA)和统计过程控制(SPC)。通过LDA方法,我们可以将一个新的被试与一组功能良好的被试进行比较,以判断新的被试在给定的时间间隔内的纵向模式是否与规则模式一致。LDA方法的一个局限性是,即使到当前时间点为止的所有可用观察结果都提供了足够的证据来支持决策,它们也不能顺序地和快速地做出关于受试者的纵向模式的决策。然而,为了有效地解决SMLP问题,这种动态决策功能是至关重要的。通过SPC方法,我们可以顺序跟踪每个受试者,并通过将当前时间点的观察结果与所有历史数据进行比较来决定其表现。SPC方法的一个主要局限性是,当对给定的主题做出决定时,它们不能比较不同的主题。因此,还没有现有的统计方法可以有效地解决SMLP问题。该项目提出了一种新的方法,通过将一个主题与其他主题进行横截面比较,并使用其所有历史数据以及顺序监测方案,来确定该主题的纵向模式。新方法结合了LDA和SPC方法的主要优点,应该提供一个有效的解决方案SMLP问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peihua Qiu其他文献

Nonparametric monitoring of multiple count data
多重计数数据的非参数监控
  • DOI:
    10.1080/24725854.2018.1530486
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Peihua Qiu;Zhen He;Zhiqiong Wang
  • 通讯作者:
    Zhiqiong Wang
General Charting Scheme For Monitoring Serially Correlated Data With Short-Memory Dependence and Nonparametric Distributions
用于监控具有短记忆依赖性和非参数分布的序列相关数据的通用图表方案
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Wendong Li;Peihua Qiu
  • 通讯作者:
    Peihua Qiu
Surveillance of cardiovascular diseases using a multivariate dynamic screening system
使用多变量动态筛查系统监测心血管疾病
  • DOI:
    10.1002/sim.6477
  • 发表时间:
    2015-06
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Peihua Qiu;Dongdong Xiang
  • 通讯作者:
    Dongdong Xiang
Reliable Post-Signal Fault Diagnosis for Correlated High-Dimensional Data Streams
相关高维数据流的可靠信号后故障诊断
  • DOI:
    10.1080/00401706.2021.1979100
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Dongdong Xiang;Peihua Qiu;Dezhi Wang;Wendong Li
  • 通讯作者:
    Wendong Li
Surface-Enhanced Third-Order Nonlinear Optical Response of C 60 Films on Roughed Glass Plate
粗化玻璃板上 C 60 薄膜的表面增强三阶非线性光学响应
  • DOI:
    10.1088/0256-307x/10/10/007
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Shijie Li;Xiaoping Xu;Wen;Peihua Qiu;Wenyao Wang
  • 通讯作者:
    Wenyao Wang

Peihua Qiu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peihua Qiu', 18)}}的其他基金

Longitudinal Modelling and Sequential Monitoring of Image Data Streams
图像数据流的纵向建模和顺序监控
  • 批准号:
    1914639
  • 财政年份:
    2019
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Intensity-Based Image Registration and 3-D Image Denoising
基于强度的图像配准和 3D 图像去噪
  • 批准号:
    1007506
  • 财政年份:
    2010
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Statistical Analysis of Image Restoration and Its Applications in Magnetic Resonance Imaging
图像恢复统计分析及其在磁共振成像中的应用
  • 批准号:
    0706082
  • 财政年份:
    2007
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Image Segmentation for cDNA Microarray Data and Jump-Preserving Surface Estimation
cDNA 微阵列数据的图像分割和跳跃保持表面估计
  • 批准号:
    0406020
  • 财政年份:
    2004
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Natural History of Overall Mortality with Diagnosed Symptomatic Gallstone Disease in the United States: A Sequential Mixed-methods Study Evaluating Emergency, Non-emergency, and No Cholecystectomy
美国诊断有症状胆结石病的总体死亡率的自然史:一项评估紧急、非紧急和不进行胆囊切除术的序贯混合方法研究
  • 批准号:
    10664339
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Developement of sequential carbon-carbon bond-forming methods by reactivity control of C1 carbenoid species
通过 C1 类胡萝卜素的反应性控制开发连续碳-碳键形成方法
  • 批准号:
    23K04744
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Examining the Potential and Limits of Rubrics as Tools for Racial Equity in Graduate Admissions: A Sequential Mixed-Methods Inquiry
检验评分标准作为研究生招生种族平等工具的潜力和局限性:一项序贯混合方法调查
  • 批准号:
    2314982
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Construction of Large-Scale Sequential Decision-Making Methods Leveraging Structures
利用结构构建大规模顺序决策方法
  • 批准号:
    23K19986
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Towards Universal Accessibility in Mental Healthcare for Young Canadians: A Sequential Mixed-Methods, Patient-Oriented Research Study.
实现加拿大年轻人心理保健的普遍可及性:一项序贯混合方法、以患者为导向的研究。
  • 批准号:
    495147
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Re-thinking antibiotic prescription: a sequential mixed methods study in Quebec Dental Schools
重新思考抗生素处方:魁北克牙科学校的序贯混合方法研究
  • 批准号:
    463543
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Operating Grants
Understanding and Combining Sequential Decision Making Methods
理解和结合顺序决策方法
  • 批准号:
    RGPIN-2021-03099
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Sequential Monte Carlo Methods for Model Based Reinforcement Learning
基于模型的强化学习的顺序蒙特卡罗方法
  • 批准号:
    573681-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of Methods for Organic Synthesis Based on Sequential Functionalization of Remote Sites
基于远程位点顺序功能化的有机合成方法的发展
  • 批准号:
    22H02085
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A mixed-methods sequential explanatory study to examine the implementation landscape for evidence-based transdiagnostic approaches for mental disorders in primary healthcare in Ukraine.
一项混合方法序贯解释性研究,旨在检验乌克兰初级医疗保健中精神障碍循证跨诊断方法的实施情况。
  • 批准号:
    10295238
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了