Motivic Cohomology and K-Theory
动机上同调和 K 理论
基本信息
- 批准号:1406502
- 负责人:
- 金额:$ 15.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research project will try to settle old conjectures about the structure of K-theory and Motives, and clarify recently discovered relationships between disparate areas of algebra, algebraic geometry, and algebraic topology. The motive of an algebraic variety is built from geometric relationships, and is designed to be the universal motif for cohomological invariants (hence the name), so its structure reveals aspects of geometry. In contrast, the K-theory of a ring or variety is built from relationships involving linear algebra using algebraic topology, so its structure reveals aspects of algebra and topology. Clarifying the relationships between these constructs will help our understanding of many phenomena that are currently understand only poorly.One part of the project is to find clean proofs of major pieces of the proof of the recently-verified Bloch-Kato conjecture. This includes trying to: find a general degree formula which combines various degree formulas due to Rost, in terms of algebraic cobordism theory; establish an equivalence between models of the symmetric powers of a normal variety; and understand motivic cohomology operations better. These all play a role in the proof. This part of the project will be invaluable in training young researchers around the world. A related part of the project is to understand how Voevodsky's slice filtration is related to algebraic cobordism and other motivic spectra. The goal is to verify several of the slice conjectures, especially in finite characteristic, using homological algebra and algebraic Thom spaces. Part of this will be joint work with graduate students, contributing to their training. The project will also study the relationship between the singularities of a variety, its K-theory and its cdh-cohomology, using recently developed cohomological techniques and the relationship to cyclic homology and de Rham-Witt theory. This should shed some light on classes of singularities related to du Bois singularities. The final part of the project is to formulate an archimedean cohomology for a motive over a number field and relate it to Serre's local factors for the L-functions of the motive. This generalizes work of Connes and Consani, and uses cyclic homology for schemes.
该研究项目将试图解决关于k理论和动机结构的旧猜想,并澄清最近发现的代数、代数几何和代数拓扑等不同领域之间的关系。代数变量的动机是建立在几何关系之上的,并被设计为上同调不变量的通用母题(因此得名),因此它的结构揭示了几何的各个方面。相比之下,环或变体的k理论是利用代数拓扑从涉及线性代数的关系中建立起来的,因此其结构揭示了代数和拓扑的各个方面。澄清这些构念之间的关系将有助于我们理解目前知之甚少的许多现象。该项目的一部分是为最近验证的Bloch-Kato猜想的主要证明找到清晰的证据。这包括:从代数共数论的角度,找到一个综合了Rost的各种次公式的一般次公式;建立正态变量的对称幂模型之间的等价性;更好地理解动机上同运算。这些都在证明中发挥了作用。该项目的这一部分在培训世界各地的年轻研究人员方面将是无价的。该项目的一个相关部分是了解Voevodsky的切片过滤是如何与代数共坐标和其他动力谱相关联的。目的是验证几个片猜想,特别是在有限特征,使用同构代数和代数Thom空间。其中一部分将与研究生合作,为他们的培训做出贡献。该项目还将研究奇点之间的关系,它的k -理论和它的cdh-上同调,使用最近发展的上同调技术和循环同调和德拉姆-维特理论的关系。这应该会对与杜波依斯奇点相关的奇点类有所启发。项目的最后一部分是在数域上建立动机的阿基米德上同,并将其与动机的l -函数的Serre局部因子联系起来。推广了cones和Consani的工作,并对方案使用了循环同调。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Weibel其他文献
Localization, monoid sets and emK/em-theory
本地化、幺半群集和 emK/em 理论
- DOI:
10.1016/j.jalgebra.2022.09.009 - 发表时间:
2023-01-15 - 期刊:
- 影响因子:0.800
- 作者:
Ian Coley;Charles Weibel - 通讯作者:
Charles Weibel
Relative Cartier divisors and Laurent polynomial extensions
- DOI:
10.1007/s00209-016-1710-1 - 发表时间:
2016-06-16 - 期刊:
- 影响因子:1.000
- 作者:
Vivek Sadhu;Charles Weibel - 通讯作者:
Charles Weibel
The 2-torsion in the <em>K</em>-theory of the integers
- DOI:
10.1016/s0764-4442(97)86977-7 - 发表时间:
1997-03-01 - 期刊:
- 影响因子:
- 作者:
Charles Weibel - 通讯作者:
Charles Weibel
Charles Weibel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Weibel', 18)}}的其他基金
Motivic Cohomology, Motivic Homotopy Theory and K-theory
动机上同调、动机同伦理论和 K 理论
- 批准号:
2001417 - 财政年份:2020
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
K-theory Conference - Argentina 2018
K-理论会议 - 阿根廷 2018
- 批准号:
1807100 - 财政年份:2018
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Motivic Cohomology, Motivic Homotopy Theory, and K-Theory
动机上同调、动机同伦理论和 K 理论
- 批准号:
1702233 - 财政年份:2017
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Homotopical Methods in Algebraic Geometry
FRG:合作研究:代数几何中的同伦方法
- 批准号:
0966824 - 财政年份:2010
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Algebraic K-theory and Motivic Cohomology
代数 K 理论和动机上同调
- 批准号:
0801060 - 财政年份:2008
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Summer School and Conferenceon the Arithmetic, Geometry and Topology of Algebraic Cycles; June 15-July 7, 2003; Morelia, Mexico
代数圈的算术、几何和拓扑暑期学校和会议;
- 批准号:
0301220 - 财政年份:2003
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
U.S.-Argentina Planning Visit on Hochschild and Cyclic Homology
美国-阿根廷计划对霍克希尔德和循环同调进行访问
- 批准号:
9600366 - 财政年份:1996
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic K-Theory
数学科学:代数 K 理论
- 批准号:
9500791 - 财政年份:1995
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant
相似海外基金
Motivic Cohomology, Motivic Homotopy Theory and K-theory
动机上同调、动机同伦理论和 K 理论
- 批准号:
2001417 - 财政年份:2020
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Motivic Cohomology, Motivic Homotopy Theory, and K-Theory
动机上同调、动机同伦理论和 K 理论
- 批准号:
1702233 - 财政年份:2017
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Motivic cohomology and number theory
动机上同调和数论
- 批准号:
400504-2010 - 财政年份:2010
- 资助金额:
$ 15.7万 - 项目类别:
University Undergraduate Student Research Awards
Problems in Motivic Cohomology Theory
动机上同调理论中的问题
- 批准号:
0901852 - 财政年份:2009
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
K-theory and motivic cohomology of singular schemes
奇异格式的 K 理论和动机上同调
- 批准号:
0901021 - 财政年份:2009
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant
Algebraic K-theory and Motivic Cohomology
代数 K 理论和动机上同调
- 批准号:
0801060 - 财政年份:2008
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Algebraic K-Theory and Motivic Cohomology
代数 K 理论和动机上同调
- 批准号:
0601051 - 财政年份:2006
- 资助金额:
$ 15.7万 - 项目类别:
Standard Grant
Algebraic K-theory, Motivic Cohomology and Homology of Linear Groups
代数 K 理论、动机上同调和线性群的同调
- 批准号:
0100586 - 财政年份:2001
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant
Algebraic K-theory, Motivic Cohomology and Homology of Linear Groups
代数 K 理论、动机上同调和线性群的同调
- 批准号:
9801655 - 财政年份:1998
- 资助金额:
$ 15.7万 - 项目类别:
Continuing Grant