Hyperbolic Structures from Link Diagrams

链接图的双曲结构

基本信息

  • 批准号:
    1406588
  • 负责人:
  • 金额:
    $ 11.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

Thurston's Geometrization conjecture prompted the study of one of the main objects in topology, a manifold, from a new perspective: using geometry. Soon it was noticed that hyperbolic manifolds formed the largest and the least understood class of manifolds. Informally, a hyperbolic 3-manifold is an object modeled locally on 3-dimensional space that has hyperbolic metric. An important subclass of such manifolds are knot and link complements in 3-sphere. Additionally, knots and links are an object of study on their own, and knot theory has a number of applications in pure mathematics, as well as in applied fields of study. A knot is easy to draw as a planar diagram with information about underpasses/overpasses at crossings. However, establishing the connection between the diagram and geometric properties of the corresponding 3-manifold is a hard task. This is the first main goal of the proposal. The other goal is exploring the relation between geometric invariants and invariants that come from other areas of mathematics. The PI is engaged in mentoring student research and developing software that helps to use the geometric perspective, and will continue these activities.With M. Thistlethwaite, the PI made progress towards the first goal by suggesting a new method for computing the hyperbolic structure directly from a link diagram. With W. Neumann, she generalized this approach to parameterize hyperbolic structure of a cusped 3-manifold. This project blends the new method with various techniques for a systematic study of the intrinsic geometry of hyperbolic links and its connection with a combinatorial picture. Among the open problems considered are questions about the canonical cell decomposition, hyperbolic volume, lengths of various arcs, geometric triangulations, etc. While these questions are interesting a priori, a significant part of the project is concerned with immediate applications of the geometric insight obtained. For example, the PI will explore the relation between geometric and quantum link invariants, investigate the connection between the geometry and arithmetic invariants of hyperbolic 3-manifolds, approach tangle tabulation using geometry and computer calculations, and tackle some other open questions.
瑟斯顿的几何化猜想促使人们从一个新的角度来研究拓扑学中的一个主要对象——流形:利用几何学。不久人们就注意到,双曲流形是最大的也是最不为人所知的一类流形。非正式地说,双曲3流形是在三维空间上局部建模的具有双曲度量的对象。这类流形的一个重要子类是3球中的结补和连杆补。此外,结和链接本身就是一个研究对象,结理论在纯数学和应用研究领域中有许多应用。一个结很容易画成一个平面图,上面有关于地下通道/立交桥的信息。然而,建立图与相应的三流形的几何性质之间的联系是一项艰巨的任务。这是该提案的第一个主要目标。另一个目标是探索几何不变量和来自其他数学领域的不变量之间的关系。PI致力于指导学生研究和开发有助于使用几何透视的软件,并将继续这些活动。与M. Thistlethwaite一起,PI提出了一种直接从链接图计算双曲结构的新方法,朝着第一个目标取得了进展。她与W. Neumann一起,将该方法推广到尖头3流形双曲结构的参数化中。该项目将新方法与各种技术相结合,以系统地研究双曲连杆的内在几何及其与组合图的联系。在考虑的开放问题中,有关于典型单元分解,双曲体积,各种弧的长度,几何三角剖分等问题。虽然这些问题是先验的,但项目的一个重要部分是关于获得的几何洞察力的直接应用。例如,PI将探索几何不变量和量子不变量之间的关系,研究双曲3-流形的几何不变量和算术不变量之间的联系,使用几何和计算机计算方法进行缠结表,并解决一些其他开放问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anastasiia Tsvietkova其他文献

Anastasiia Tsvietkova的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anastasiia Tsvietkova', 18)}}的其他基金

CAREER: Three-manifolds with finite volume, their geometry, representations, and complexity
职业:有限体积的三流形、它们的几何形状、表示形式和复杂性
  • 批准号:
    2142487
  • 财政年份:
    2022
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Continuing Grant
Intrinsic Geometry, Topology, and Complexity of 3-Manifolds
三流形的本征几何、拓扑和复杂性
  • 批准号:
    2005496
  • 财政年份:
    2020
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Hyperbolic Structures from Link Diagrams
链接图的双曲结构
  • 批准号:
    1664425
  • 财政年份:
    2016
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative research: New structures in link homology and categorification
合作研究:链接同源性和分类的新结构
  • 批准号:
    1807161
  • 财政年份:
    2018
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Collaborative Research: New Structures in Link Homology and Categorification
合作研究:链接同源性和分类的新结构
  • 批准号:
    1807425
  • 财政年份:
    2018
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Hyperbolic Structures from Link Diagrams
链接图的双曲结构
  • 批准号:
    1664425
  • 财政年份:
    2016
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Hyper-actuated flexure-link structures for high performance bearing-free servo mechanisms
用于高性能无轴承伺服机构的超驱动挠性连杆结构
  • 批准号:
    EP/M016285/1
  • 财政年份:
    2015
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Research Grant
Seismic Response Control of Structures Using Inertia Mass Dampere with Link Mechanism
连杆机构惯性质量阻尼器结构地震响应控制
  • 批准号:
    26289195
  • 财政年份:
    2014
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Link between the local structures of liquid and solid phases during directional solidification of high-temperature melts
高温熔体定向凝固过程中液相和固相局部结构之间的联系
  • 批准号:
    24760618
  • 财政年份:
    2012
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Contact structures, open books, and connections between Heegaard Floer homology and the Khovanov-Rozansky link homology theories
Heegaard Floer 同调与 Khovanov-Rozansky 链接同调理论之间的联系结构、开放书籍以及联系
  • 批准号:
    1251064
  • 财政年份:
    2012
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Contact structures, open books, and connections between Heegaard Floer homology and the Khovanov-Rozansky link homology theories
Heegaard Floer 同调与 Khovanov-Rozansky 链接同调理论之间的联系结构、开放书籍以及联系
  • 批准号:
    1104688
  • 财政年份:
    2011
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Standard Grant
Characterization and functional relevance of nanotubular highway-like structures that physically link hematopoietic stem and progenitor cells over long distances (B03)
长距离物理连接造血干细胞和祖细胞的纳米管高速公路状结构的表征和功能相关性 (B03)
  • 批准号:
    137440662
  • 财政年份:
    2009
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Collaborative Research Centres
A Study of Organic Link Structures between Building Linguistic Knowledge and Communicative Activities in teaching of English
英语教学中语言知识建构与交际活动有机联系结构研究
  • 批准号:
    21730710
  • 财政年份:
    2009
  • 资助金额:
    $ 11.36万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了