The singular support of l-adic sheaves; the relative continuous p-adic K-theory and cyclic homology

L-adic 滑轮的独特支撑;

基本信息

  • 批准号:
    1406734
  • 负责人:
  • 金额:
    $ 48.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The characteristic cycle is a key invariant of singularities of complex spaces; all its known constructions have transcendental nature. The aim of the first part of the project is to develop a purely geometric approach to the theory that can be used in characteristic p geometry. The idea is to use a geometric Radon transform to see hidden components of the characteristic cycle, similar to the way that computer tomography (based on a classical Radon transform) allows imaging of the internal structure of the human body. The goal of the second part of the project is to explain how p-adic cycles on a p-adic space can be recovered from their rotation numbers (the periods of differential forms).The characteristic cycle of a constructible sheaf F on a smooth algebraic variety provides information about the (total) dimension of the spaces of vanishing cycles for all functions with isolated singularities (with respect to F). Its construction is known, due to Kashiwara and Shapira, for complex varieties, and it is purely transcendental. The goal of the first part of the project is to find a purely algebro-geometric construction of the characteristic cycle that can be applied in characteristic p geometry. The key instrument is Brylinski's geometric Radon transform which is a powerful generaliztion of the classical Lefschetz pencil theory. The second part of the project aims to use a canonical isogeny between the relative continuous K-theory of a p-adic ring and its continuous cyclic homology, as defined in a recent preprint (arXiv:1312.3299) of the principal investigator, to understand algebraic cycles on a p-adic manifold.
特征圈是复空间奇点的一个关键不变量,它的所有已知构造都具有超越性质。该项目的第一部分的目的是开发一个纯粹的几何方法的理论,可用于特征p几何。这个想法是使用几何Radon变换来查看特征周期的隐藏组件,类似于计算机断层扫描(基于经典Radon变换)允许对人体内部结构进行成像的方式。该项目的第二部分的目标是解释如何从p-adic空间上的p-adic循环的旋转数(微分形式的周期)中恢复p-adic循环。光滑代数簇上的可构造层F的特征循环提供了关于所有具有孤立奇点的函数(关于F)的消失循环空间的(总)维数的信息。它的建设是众所周知的,由于柏原和Shapira,复杂的品种,它是纯粹的先验。该项目的第一部分的目标是找到一个纯粹的代数几何结构的特征循环,可以应用于特征p几何。关键工具是Brylinski的几何Radon变换,它是经典Lefschetz束理论的一个强有力的推广。该项目的第二部分旨在使用p-adic环的相对连续K-理论与其连续循环同调之间的典范同构,如主要研究者最近的预印本(arXiv:1312.3299)中所定义的,以理解p-adic流形上的代数循环。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Beilinson其他文献

Topological E-Factors
拓扑E因子

Alexander Beilinson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Beilinson', 18)}}的其他基金

Kazhdan-Laumon Representations and Langlands Correspondence
卡日丹-劳蒙交涉和朗兰兹通讯
  • 批准号:
    9800684
  • 财政年份:
    1998
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Topology of Algebraic Varieties, Conformal Field Theory
数学科学:代数簇的代数拓扑、共形场论
  • 批准号:
    9625768
  • 财政年份:
    1996
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Topology of Algebraic Varieties and Conformal Field Theory
数学科学:代数簇的代数拓扑和共形场论
  • 批准号:
    9214772
  • 财政年份:
    1993
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Continuing grant
Mathematical Sciences: Algebraic Topology of Algebraic Varieties; Conformal Field Theory
数学科学:代数簇的代数拓扑;
  • 批准号:
    9008488
  • 财政年份:
    1990
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Standard Grant

相似国自然基金

两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
  • 批准号:
    21002080
  • 批准年份:
    2010
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
微生物发酵过程的自组织建模与优化控制
  • 批准号:
    60704036
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
  • 批准号:
    70501008
  • 批准年份:
    2005
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

An innovative international payment collection platform using fintech and FPS technology to support SMBs with international transactions that could cut fees by 83%
An%20innovative%20international%20 payment%20collection%20platform%20using%20fintech%20and%20FPS%20technology%20to%20support%20SMBs%20with%20international%20transactions%20that%20could%20cut%20fees%20by%2083%
  • 批准号:
    10098770
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Collaborative R&D
Exploring the Impact of Clinical Diagnosis on Health and Education Outcomes for Children Receiving Special Educational Needs support for Autism
探索临床诊断对接受自闭症特殊教育需求支持的儿童的健康和教育结果的影响
  • 批准号:
    ES/Z502431/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Fellowship
The effectiveness of public support for high-potential businesses
对高潜力企业的公共支持的有效性
  • 批准号:
    ES/Z50256X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Research Grant
C-NEWTRAL: smart CompreheNsive training to mainstrEam neW approaches for climaTe-neutRal cities through citizen engAgement and decision-making support
C-NEWTRAL:智能综合培训,通过公民参与和决策支持将气候中和城市的新方法纳入主流
  • 批准号:
    EP/Y032640/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Research Grant
ICF: Use of Unmanned Aerial vehicles (Medical Drones) to Support Differentiated Service Delivery Models for Elimination of HIV in Uganda
ICF:使用无人机(医疗无人机)支持乌干达消除艾滋病毒的差异化服务提供模式
  • 批准号:
    MR/Y019717/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Research Grant
Stuck in the mud: addressing the fine sediment conundrum with multiscale and interdisciplinary approaches to support global freshwater biodiversity
陷入困境:采用多尺度和跨学科方法解决细小沉积物难题,支持全球淡水生物多样性
  • 批准号:
    MR/Y020200/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Fellowship
Providing Aid to Support STEM Success for Talented, Low-Income Students
为有才华的低收入学生提供 STEM 成功支持
  • 批准号:
    2321667
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Continuing Grant
Partial Support of the Condensed Matter and Materials Research Committee
凝聚态与材料研究委员会的部分支持
  • 批准号:
    2337353
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Standard Grant
Support for Institutes and Research Groups on Qualitative and Multi-Method Research: 2024-2026
对定性和多方法研究机构和研究小组的支持:2024-2026
  • 批准号:
    2343087
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Standard Grant
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
  • 批准号:
    2341110
  • 财政年份:
    2024
  • 资助金额:
    $ 48.5万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了