Building Bridges: 2nd EU/US Summer School & Workshop on Automorphic Forms and Related Topics, June 30-July 1, 2014
搭建桥梁:第二届欧盟/美国暑期学校
基本信息
- 批准号:1407077
- 负责人:
- 金额:$ 4.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports the international meeting "Building Bridges: 2nd EU/US Summer School & Workshop on Automorphic Forms and Related Topics," which will take place June 30 to July 11, 2014, at the University of Bristol, England. The website with details is http://www.maths.bris.ac.uk/~mamjd/bb/index.html. Grant funds will be used to support US-based participants in the international summer school and workshop. This conference follows the success of the meeting "Building Bridges: 1st Summer School & Workshop," held in Aachen, Germany, in August 2012. Automorphic forms are present in almost every area of modern number theory, and they are becoming increasingly important in mathematical physics. Current research on automorphic forms is being impacted by such topics as "Explicit Methods for Modular Forms and L-functions," "The Legacy of Ramanujan," and "The Langlands Program," which are the three mini-course topics for the summer school. Each mini-course is led by a team of two internationally-recognized researchers, and will consist of three hours of lecture each morning, followed by work sessions (in small groups) in the afternoon, focused on exercises developed by the instructors. Designated post-doctoral researchers and the instructors will provide tutorial support during these sessions. Following the summer school is a conference on automorphic forms and related topics, where participants will present cutting-edge research in all areas related to automorphic forms. This workshop aims not only to foster and strengthen a long-lasting exchange between automorphic forms researchers in the EU and the US, but also to generate and sustain a friendly, supportive atmosphere, providing encouragement to young researchers, establishing mentoring opportunities for more established researchers, and serving as a forum for exchanging ideas and forming new collaborations.
这笔赠款支持国际会议“搭建桥梁:第二届欧盟/美国自守形式及相关主题暑期学校研讨会”,该会议将于2014年6月30日至7月11日在英国布里斯托大学举行。 详细信息的网站是http://www.maths.bris.ac.uk/~mamjd/bb/index.html。 赠款资金将用于支持国际暑期学校和研讨会的美国参与者。 本次会议是继2012年8月在德国亚琛举行的“搭建桥梁:第一届暑期学校讲习班”会议取得成功之后召开的。自守形式几乎存在于现代数论的每一个领域,它们在数学物理中变得越来越重要。 目前对自守形式的研究受到诸如“模块形式和L函数的显式方法”,“拉马努金的遗产”和“朗兰兹计划”等主题的影响,这是暑期学校的三个迷你课程主题。 每个迷你课程由两名国际公认的研究人员组成的团队领导,每天上午将包括三个小时的讲座,下午将进行工作会议(小组),重点是教师开发的练习。 指定的博士后研究人员和导师将在这些会议期间提供辅导支持。 暑期学校之后是一个关于自守形式和相关主题的会议,与会者将介绍与自守形式相关的所有领域的前沿研究。 该研讨会不仅旨在促进和加强欧盟和美国的自形形式研究人员之间的长期交流,而且还旨在产生和维持友好,支持的氛围,为年轻研究人员提供鼓励,为更多的成熟研究人员提供指导机会,并作为交流思想和形成新合作的论坛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Beineke其他文献
Moments of the Riemann zeta function and Eisenstein series—II
黎曼zeta函数的矩和爱森斯坦级数—II
- DOI:
10.1016/j.jnt.2003.09.008 - 发表时间:
2004 - 期刊:
- 影响因子:0.7
- 作者:
Jennifer Beineke;D. Bump - 通讯作者:
D. Bump
A summation formula for divisor functions associated to lattices
与格相关的除数函数的求和公式
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jennifer Beineke;D. Bump - 通讯作者:
D. Bump
Weyl group multiple Dirichlet series of type C
C 型 Weyl 群多重 Dirichlet 级数
- DOI:
10.2140/pjm.2011.254.11 - 发表时间:
2010 - 期刊:
- 影响因子:0.6
- 作者:
Jennifer Beineke;Ben Brubaker;Sharon M. Frechette - 通讯作者:
Sharon M. Frechette
A crystal definition for symplectic multiple dirichlet series
辛多重狄利克雷级数的晶体定义
- DOI:
10.1007/978-0-8176-8334-4_2 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jennifer Beineke;Ben Brubaker;Sharon M. Frechette - 通讯作者:
Sharon M. Frechette
Renormalization of certain integrals defining triple product L-functions
定义三重积 L 函数的某些积分的重整化
- DOI:
10.2140/pjm.2002.203.89 - 发表时间:
2002 - 期刊:
- 影响因子:0.6
- 作者:
Jennifer Beineke - 通讯作者:
Jennifer Beineke
Jennifer Beineke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Beineke', 18)}}的其他基金
RUI: Renormalized Period Integrals
RUI:重正化周期积分
- 批准号:
0203353 - 财政年份:2002
- 资助金额:
$ 4.99万 - 项目类别:
Continuing Grant
相似海外基金
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Structural Identification and Condition Assessment of Prestressed Concrete Bridges in Marine Environment Using Heterogeneous Test Data
利用异质试验数据进行海洋环境中预应力混凝土桥梁的结构识别和状态评估
- 批准号:
24K17344 - 财政年份:2024
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Conference: Building Bridges to Use-Inspired Research and Science-Informed Practices
会议:搭建通向使用启发的研究和科学实践的桥梁
- 批准号:
2309541 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
New Bridges to Gromov-Witten Theory
通往格罗莫夫-维滕理论的新桥梁
- 批准号:
2302116 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Vision-based system identification of highway bridges in service or after earthquakes
基于视觉的公路桥梁在役或震后识别
- 批准号:
23KF0241 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Automation of inspection of bridges and tunnels
桥梁和隧道检测自动化
- 批准号:
23K03991 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Full-field sensing of small- and medium-span bridges using 4K high-speed cameras and development of a database for infrastructure maintenance management
使用4K高速摄像机对中小跨桥梁进行全场传感并开发基础设施维护管理数据库
- 批准号:
23H01483 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
GP-UP: Immersive Connections in Geosciences: Paleontological Field Experiences and Bridges to Robust Career Training Opportunities
GP-UP:地球科学的沉浸式联系:古生物学现场经验和通往强大职业培训机会的桥梁
- 批准号:
2227897 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant
Building Bridges to Support Talented, Low-Income Engineering Students
搭建桥梁支持有才华的低收入工程学生
- 批准号:
2220899 - 财政年份:2023
- 资助金额:
$ 4.99万 - 项目类别:
Standard Grant