III: Medium: Collaborative Research: Collective Opinion Fraud Detection: Identifying and Integrating Cues from Language, Behavior, and Networks
III:媒介:协作研究:集体意见欺诈检测:识别和整合来自语言、行为和网络的线索
基本信息
- 批准号:1408924
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Given user reviews on Web sites such as Yelp, Amazon, and TripAdvisor, which ones should one trust? Online reviews have become an important resource for public opinion sharing. They influence our decisions over an extremely wide spectrum of daily and professional activities: e.g., where to eat, where to stay, which products to purchase, which doctors to see, which books to read, which universities to attend, and so on. However, the credibility and trustworthiness of online reviews are at stake. It is well known that a large body of reviews is fabricated -- either by owners, competitors, or entities paid by those -- to create false perception on the actual quality of the products and services. What is more, opinion fraud is prevalent; while credit card fraud is as rare as 0.2% or less, it is estimated that 20-30% of the reviews on well-known service sites could be fake. This poses a serious risk to businesses and the public, from investing on a low-quality product to consulting an incompetent doctor for diagnosis and treatment. Like other kinds of fraud, opinion fraud is a serious legal offense. In fact, it is currently being recognized as a serious issue in law enforcement by policymakers. Thus solving this problem is of great importance to businesses and the general public alike. Accurately spotting opinion fraud will enable site owners to provide trustworthy content, maintain the integrity of their service, and protect the online citizens from unfair (or potentially harmful) products and services. Businesses will also benefit from reviews with reliable feedback. Honest businesses will be indirectly rewarded, as it will no longer be easy for unscrupulous businesses to benefit from fake reviews. The research outcomes will thus contribute significantly to the healthy growth of the Internet commerce. Educational activities include incorporating research findings in graduate level courses, educating public on fraudulent behavior and misinformation, and providing publicly available educational materials including lectures and manuscripts.Given the critical issues of opinion fraud in online communities, how can one identify fake reviews and attribute responsible culprits behind them? By conjoining expertise of the PIs over various modalities of deception footprints ranging over language, user behavior, and relational information, this project presents a research program that will result in much needed solutions to this emergent, prevalent, and socially impactful problem. The ultimate goal is to create a unified detection framework via synergistic integration of multiple information sources; from linguistics, user behavior, and network effects, to obtain the best of all worlds. The main idea is to formulate the problem as a relational inference task on composite heterogeneous networks, providing a principled, extensible approach that can blend and reinforce all the above cues towards effective and robust detection of fraud. From a scientific point of view, the research brings together three disciplines: natural language analysis, behavioral modeling, and graph mining. The outcome is a suite of novel, principled, and scalable techniques and models that will enhance our understanding of the creation and dissemination of opinion fraud and misinformation in general at a large scale. The PIs will collaborate with industry partners such as Yelp, Google, and Amazon, directly solicit online fake reviews, and conduct well-designed user studies for testing and validation of their techniques. The project web site (http://www.andrew.cmu.edu/user/lakoglu/PROJECTS/OPINION_FRAUD/) provides additional information and will include open-source software and datasets.
考虑到Yelp、亚马逊和TripAdvisor等网站上的用户评论,人们应该相信哪一个?网络评论已成为民意分享的重要资源。它们影响着我们在日常和专业活动中的广泛决策:例如,在哪里吃、在哪里住、买什么产品、看什么医生、读什么书、上什么大学等等,然而,网络评论的公信力和可信赖度却岌岌可危。众所周知,大量的评论是由所有者、竞争对手或由这些人支付的实体捏造的,目的是对产品和服务的实际质量造成错误的看法。更重要的是,意见欺诈是普遍的;虽然信用卡欺诈是罕见的0.2%或更少,据估计,20-30%的评论知名服务网站可能是假的。这给企业和公众带来了严重的风险,从投资低质量的产品到咨询不称职的医生进行诊断和治疗。像其他类型的欺诈一样,意见欺诈是一种严重的法律的罪行。事实上,决策者目前已认识到这是执法中的一个严重问题。因此,解决这个问题对企业和公众都非常重要。准确地发现意见欺诈将使网站所有者能够提供值得信赖的内容,保持其服务的完整性,并保护在线公民免受不公平(或潜在有害)的产品和服务。企业也将受益于具有可靠反馈的评论。诚实的企业将间接获得奖励,因为无良企业将不再容易从虚假评论中受益。因此,研究成果将有助于互联网商务的健康发展。教育活动包括将研究成果纳入研究生课程,教育公众了解欺诈行为和错误信息,并提供公开的教育材料,包括讲座和手稿。鉴于在线社区中的意见欺诈问题至关重要,如何识别虚假评论并将其归咎于背后的罪魁祸首?通过结合专业知识的PI在各种形式的欺骗足迹,包括语言,用户行为和关系信息,该项目提出了一个研究计划,将导致急需的解决方案,这个紧急的,普遍的,社会影响力的问题。最终目标是通过多个信息源的协同集成创建一个统一的检测框架;从语言学,用户行为和网络效应,以获得最好的所有世界。其主要思想是将问题制定为复合异构网络上的关系推理任务,提供一种原则性的,可扩展的方法,可以混合和加强所有上述线索,以实现有效和强大的欺诈检测。从科学的角度来看,该研究汇集了三个学科:自然语言分析,行为建模和图挖掘。其结果是一套新颖的,原则性的,可扩展的技术和模型,将提高我们的理解的创造和传播的意见欺诈和错误信息一般在大规模。PI将与Yelp、谷歌和亚马逊等行业合作伙伴合作,直接征求在线虚假评论,并进行精心设计的用户研究,以测试和验证其技术。项目网站(http://www.andrew.cmu.edu/user/lakoglu/PROJECTS/OPINION_FRAUD/)提供更多信息,并将包括开放源码软件和数据集。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christos Faloutsos其他文献
大規模時系列データのための特徴自動抽出と将来予測
大规模时间序列数据的自动特征提取和未来预测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yasuko Matsubara;Yasushi Sakurai;Christos Faloutsos;松原靖子;松原靖子 - 通讯作者:
松原靖子
イメージの鮮明度と残像の明瞭さの関係
图像清晰度与残像清晰度之间的关系
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yasuko Matsubara;Yasushi Sakurai;Christos Faloutsos;廣瀬健司・菱谷晋介 - 通讯作者:
廣瀬健司・菱谷晋介
EagleMine: Vision-guided Micro-clusters recognition and collective anomaly detection
EagleMine:视觉引导微团簇识别和集体异常检测
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Wenjie Feng;Shenghua Liu;Christos Faloutsos;Bryan Hooi;Huawei Shen;Xueqi Cheng - 通讯作者:
Xueqi Cheng
DualCast: Friendship-Preference Co-evolution Forecasting for Attributed Networks
DualCast:属性网络的友谊偏好协同进化预测
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Hiroyoshi Ito;Christos Faloutsos - 通讯作者:
Christos Faloutsos
: Patterns and the SOAR Model
:模式和 SOAR 模型
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
D. Eswaran;Reihaneh Rabbany;Artur W. Dubrawski;Christos Faloutsos - 通讯作者:
Christos Faloutsos
Christos Faloutsos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christos Faloutsos', 18)}}的其他基金
TWC: Medium: Collaborative: Know Thy Enemy: Data Mining Meets Networks for Understanding Web-Based Malware Dissemination
TWC:媒介:协作:了解你的敌人:数据挖掘与网络结合以了解基于 Web 的恶意软件传播
- 批准号:
1314632 - 财政年份:2013
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
CGV: Small: Making Sense out of Large Graphs - Bridging HCI with Data Mining
CGV:小:从大图中理解 - 连接 HCI 与数据挖掘
- 批准号:
1217559 - 财政年份:2012
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
BIGDATA: Mid-Scale: DA: Collaborative Research: Big Tensor Mining: Theory, Scalable Algorithms and Applications
BIGDATA:中型:DA:协作研究:大张量挖掘:理论、可扩展算法和应用
- 批准号:
1247489 - 财政年份:2012
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
III: Small: Influence and Virus Propagation in Large Graphs - Theory and Algorithms
III:小:大图中的影响和病毒传播 - 理论和算法
- 批准号:
1017415 - 财政年份:2010
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
The Second Workshop on Large-Scale Data Mining: Theory and Applications
第二届大规模数据挖掘:理论与应用研讨会
- 批准号:
1045306 - 财政年份:2010
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
III-CXT-Large: Collaborative Research: Interactive and Intelligent searching of biological images by query and network navigation with learning capabilities.
III-CXT-Large:协作研究:通过具有学习功能的查询和网络导航对生物图像进行交互式和智能搜索。
- 批准号:
0808661 - 财政年份:2008
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
III-COR: Collaborative Research: Mining Biomedical and Network Data Using Tensors
III-COR:协作研究:使用张量挖掘生物医学和网络数据
- 批准号:
0705359 - 财政年份:2007
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: NETS-NBD: RIDR: Towards Robust Inter-Domain Routing: Measurements, Models, and Deployable Tools
协作研究:NETS-NBD:RIDR:迈向稳健的域间路由:测量、模型和可部署工具
- 批准号:
0721736 - 财政年份:2007
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
Finding Patterns and Anomalies in Large Time-Evolving Graphs
在大型时间演化图中查找模式和异常
- 批准号:
0534205 - 财政年份:2006
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
ITR Collaborative Research: Indexing, Retrieval, and Use of Large Motion Databases
ITR 协作研究:大型运动数据库的索引、检索和使用
- 批准号:
0326322 - 财政年份:2004
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
- 批准号:
2406648 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant