TWC: Medium: Collaborative: Re[DP]: Realistic Data Mining Under Differential Privacy

TWC:媒介:协作:Re[DP]:差异隐私下的现实数据挖掘

基本信息

  • 批准号:
    1408982
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

The collection and analysis of personal data about individuals has revolutionized information systems and fueled US and global economies. But privacy concerns regarding the use of such data loom large. Differential privacy has emerged as a gold standard for mathematically characterizing the privacy risks of algorithms using personal data. Yet, adoption of differentially private algorithms in industry or government agencies has been startlingly rare. This failure of adoption stems largely from a mismatch between the idealized problem settings considered to date by privacy researchers and the complex real-world workflows needed for mining personal data. This project will expand the practical usefulness of privacy algorithms, encouraging their use through technology transfer to the US Census and medical researchers at Duke University, and ultimately ensuring privacy protection with increased data sharing and transmission of knowledge.This project aims to systematically study the complete workflow involved in mining personal data, and solve key problems that have diminished usability and prevented widespread deployment of differential privacy. Research activities include developing (i) private algorithms for data preprocessing (cleaning, imputation, and other transformations), (ii) algorithms to support parallel and iterative model selection, (iii) semantically meaningful guidelines for setting privacy policies and utility benchmarks. Results will guide the design and implementation of a novel web-based framework (DPcomp) for testing and evaluating the deployment of privacy algorithms. Broader impacts of this project include technology transfer to the US Census and medical researchers at Duke University, and incorporating privacy themes into new undergraduate courses. DPcomp will stimulate interaction between data owners and privacy researchers, and help unearth new research questions.
个人数据的收集和分析彻底改变了信息系统,并推动了美国和全球经济的发展。但对使用此类数据的隐私担忧凸显出来。差分隐私已经成为数学上描述使用个人数据的算法的隐私风险的黄金标准。 然而,在行业或政府机构中采用差异化隐私算法的情况非常罕见。 这种采用的失败主要源于隐私研究人员迄今为止所考虑的理想化问题设置与挖掘个人数据所需的复杂现实工作流程之间的不匹配。 该项目将扩大隐私算法的实际用途,通过向美国人口普查和杜克大学的医学研究人员转让技术来鼓励其使用,并最终通过增加数据共享和知识传输来确保隐私保护。该项目旨在系统地研究挖掘个人数据所涉及的完整工作流程,并解决降低可用性和阻止差异隐私的广泛部署的关键问题。研究活动包括开发(i)用于数据预处理(清洗,插补和其他转换)的私有算法,(ii)支持并行和迭代模型选择的算法,(iii)用于设置隐私策略和实用程序基准的语义有意义的指南。 结果将指导设计和实施一种新的基于Web的框架(DPcomp)的测试和评估部署的隐私算法。 该项目更广泛的影响包括向美国人口普查和杜克大学的医学研究人员转让技术,并将隐私主题纳入新的本科课程。DPcomp将促进数据所有者和隐私研究人员之间的互动,并帮助挖掘新的研究问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashwin Machanavajjhala其他文献

Architecting a Differentially Private SQL Engine
构建差异私有 SQL 引擎
DP-PQD: Privately Detecting Per-Query Gaps In Synthetic Data Generated By Black-Box Mechanisms
DP-PQD:私下检测黑盒机制生成的合成数据中的每个查询差距
  • DOI:
    10.48550/arxiv.2309.08574
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shweta Patwa;Danyu Sun;Amir Gilad;Ashwin Machanavajjhala;Sudeepa Roy
  • 通讯作者:
    Sudeepa Roy
Differential Privacy in the Wild: A Tutorial on Current Practices & Open Challenges
野外差异隐私:当前实践教程
Transitioning from testbeds to ships: an experience study in deploying the TIPPERS Internet of Things platform to the US Navy
从试验台到舰船的转变:向美国海军部署 TIPPERS 物联网平台的经验研究
  • DOI:
    10.1177/1548512920956383
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Archer;M. August;Georgios Bouloukakis;Christopher Davison;Mamadou H. Diallo;Dhrubajyoti Ghosh;Christopher T. Graves;Michael Hay;Xi He;Peeter Laud;Steve Lu;Ashwin Machanavajjhala;S. Mehrotra;G. Miklau;A. Pankova;Shantanu Sharma;N. Venkatasubramanian;Guoxi Wang;Roberto Yus
  • 通讯作者:
    Roberto Yus
On the efficiency of checking perfect privacy
论完美隐私检查的效率

Ashwin Machanavajjhala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashwin Machanavajjhala', 18)}}的其他基金

CAREER: PROTEUS: A Practical and Rigorous Toolkit for Privacy
职业:PROTEUS:实用且严格的隐私工具包
  • 批准号:
    1253327
  • 财政年份:
    2013
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似海外基金

TWC SBE: Medium: Collaborative: Brain Hacking: Assessing Psychological and Computational Vulnerabilities in Brain-based Biometrics
TWC SBE:媒介:协作:大脑黑客:评估基于大脑的生物识别技术中的心理和计算漏洞
  • 批准号:
    1840790
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
TWC: Medium: Collaborative: Black-Box Evaluation of Cryptographic Entropy at Scale
TWC:媒介:协作:大规模密码熵的黑盒评估
  • 批准号:
    1937622
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC SBE: Medium: Collaborative: Building a Privacy-Preserving Social Networking Platform from a Technological and Sociological Perspective
TWC SBE:媒介:协作:从技术和社会学角度构建保护隐私的社交网络平台
  • 批准号:
    1855391
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Systems, Tools, and Techniques for Executing, Managing, and Securing SGX Programs
TWC:媒介:协作:用于执行、管理和保护 SGX 程序的系统、工具和技术
  • 批准号:
    1834213
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Efficient Repair of Learning Systems via Machine Unlearning
TWC:媒介:协作:通过机器取消学习有效修复学习系统
  • 批准号:
    1854000
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Seal: Secure Engine for AnaLytics - From Secure Similarity Search to Secure Data Analytics
TWC:媒介:协作:Seal:AnaLytics 的安全引擎 - 从安全相似性搜索到安全数据分析
  • 批准号:
    1929901
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC: TTP Option: Medium: Collaborative: MALDIVES: Developing a Comprehensive Understanding of Malware Delivery Mechanisms
TWC:TTP 选项:中:协作:马尔代夫:全面了解恶意软件传播机制
  • 批准号:
    1748127
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC SBE: Medium: Collaborative: Dollars for Hertz: Making Trustworthy Spectrum Sharing Technically and Economically Viable
TWC SBE:媒介:协作:赫兹美元:使值得信赖的频谱共享在技术上和经济上可行
  • 批准号:
    1801986
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: New Protocols and Systems for RAM-Based Secure Computation
TWC:媒介:协作:基于 RAM 的安全计算的新协议和系统
  • 批准号:
    1562888
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
TWC: Medium: Collaborative: Systems, Tools, and Techniques for Executing, Managing, and Securing SGX Programs
TWC:媒介:协作:用于执行、管理和保护 SGX 程序的系统、工具和技术
  • 批准号:
    1563848
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了