Hybrid Composites for Light-Controlled CO and Silver Delivery to Malignant Sites and Infection

用于光控CO和银输送至恶性部位和感染的混合复合材料

基本信息

  • 批准号:
    1409335
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Nontechnical: This award by the Biomaterials Program in the Division of Materials Research to University of California Santa Cruz is for the development of biocompatible nanoparticles with photoactive carbon monoxide-donors that can elicit either cell recovery or death depending on the concentration. Although carbon monoxide (CO) is commonly known as the 'silent killer', in recent years salutary effects of low doses of this noxious gas have been demonstrated in oxygen-deprived tissues (as in stroke or heart attack) and in organ transplants. This surprising discovery has prompted the research community to develop new delivery modes in which controlled doses of CO can be delivered to biological targets. Because CO induces programmed cell death in cancer cells at elevated levels, attempts are also being made to deliver high doses of CO selectively at malignant sites to combat cancer. This research focuses on development of silica-based nanoparticles with photoactive CO-donors that can elicit either cell recovery or death depending on the concentration. Entrapment of the CO-donor within the porous nanoparticles will ensure very little side effects from the byproducts of the drug. Research will also be directed toward development of a cellulose-based bandage material that incorporates another salutary agent, namely silver. The bandage material will be impregnated with fluorescent silver compounds to track the sustained delivery of silver to infected wounds, often encountered on burn victims. This new delivery mode will allow monitoring of the wound healing process with time and amount of silver applied to the wound site. Together, these composite materials will provide new and convenient ways to treat inflammation, transplant failures, malignancies, and chronic wound infections.Technical: In the first part of the project, photoactive carbon monoxide (CO)-donating metal complexes designed in the Principal Investigator's (PI) group, will be incorporated into the pores of 50-70 nm mesoporous silica-based nanoparticles for on-demand CO delivery to: a) provide protection to oxidatively-damaged sites (as in ischemia and balloon angioplasty) under low-flux regimen; and b) eradicate malignant cells (colon or breast cancer) under high dose conditions. Characterization of the nanoparticle will utilize the expertise of the co-PI's group while the biological assays will be completed in the PI's laboratory. Confinement of the CO sources in the nanoparticles will ensure very little toxicity from the byproducts of the CO-donors in each case and the enhanced uptake of the nanoparticles will allow preferential kill of cancer cells in the latter application. The second part of the project is intended to develop carboxymethyl cellulose bandage materials with impregnated fluorescent silver compounds to track silver delivery to infected wounds, often seen in burn victims. This research effort will use designed silver complexes of fluorescent ligands for slow release of silver (to avoid precipitation as is the case with ordinary silver salts) and tracking the extent of drug delivery through turn-on or turn-off of fluorescence. Participation in these projects will allow the graduate and undergraduate students (some from underrepresented groups) to acquire experience in a wide range of fields including chemical synthesis, biochemistry, materials science, drug-design and assays, and cell biology. Successful completion of the work will afford new biocompatible composites that could be employed to deliver CO (a difficult gas to handle in hospital settings) and silver for various high-impact biomedical applications such as the treatment of infections, vasorelaxation, cytoprotection from oxidative and inflammatory damage, and cancer therapy.
非技术性:该奖项由加州大学圣克鲁斯材料研究部生物材料项目授予,用于开发具有光敏一氧化碳供体的生物相容性纳米颗粒,该纳米颗粒可以根据浓度引起细胞恢复或死亡。虽然一氧化碳(CO)通常被称为“无声的杀手”,但近年来,低剂量的这种有毒气体在缺氧组织(如中风或心脏病发作)和器官移植中的有益作用已经得到证实。这一令人惊讶的发现促使研究界开发新的递送模式,其中可以将受控剂量的CO递送到生物靶点。由于CO在升高的水平下诱导癌细胞中的程序性细胞死亡,因此还尝试在恶性部位选择性地递送高剂量的CO以对抗癌症。这项研究的重点是开发基于二氧化硅的纳米粒子与光活性CO供体,可以引起细胞恢复或死亡取决于浓度。CO供体在多孔纳米颗粒内的捕获将确保来自药物副产物的非常小的副作用。研究还将致力于开发一种纤维素基绷带材料,该材料含有另一种有益的物质,即银。绷带材料将用荧光银化合物浸渍,以跟踪银向烧伤受害者经常遇到的感染伤口的持续递送。这种新的输送模式将允许监测伤口愈合过程以及施加到伤口部位的银的时间和量。这些复合材料将为治疗炎症、移植失败、恶性肿瘤和慢性伤口感染提供新的便捷方法。技术:在该项目的第一部分,主要研究者(PI)团队设计的光活性一氧化碳(CO)供体金属配合物将被纳入50-70 nm介孔二氧化硅基纳米颗粒的孔隙中,用于按需将CO输送到:a)在低通量方案下对氧化损伤部位提供保护(如在局部缺血和球囊血管成形术中);和B)在高剂量条件下根除恶性细胞(结肠癌或乳腺癌)。纳米颗粒的表征将利用共同PI小组的专业知识,而生物测定将在PI实验室完成。将CO源限制在纳米颗粒中将确保在每种情况下来自CO供体的副产物的毒性非常小,并且纳米颗粒的增强的摄取将允许在后一种应用中优先杀死癌细胞。该项目的第二部分旨在开发含荧光银化合物的羧甲基纤维素绷带材料,以跟踪银向烧伤患者感染伤口的输送。这项研究工作将使用设计的荧光配体的银络合物来缓慢释放银(以避免沉淀,如普通银盐的情况)并通过荧光的开启或关闭来跟踪药物递送的程度。参与这些项目将使研究生和本科生(一些来自代表性不足的群体)获得广泛领域的经验,包括化学合成,生物化学,材料科学,药物设计和分析,以及细胞生物学。这项工作的成功完成将提供新的生物相容性复合材料,可用于输送CO(一种在医院环境中难以处理的气体)和银,用于各种高影响力的生物医学应用,如治疗感染,血管舒张,细胞保护免受氧化和炎症损伤,以及癌症治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pradip Mascharak其他文献

Pradip Mascharak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pradip Mascharak', 18)}}的其他基金

Light-Induced NO Release from Zeolite-Nitrosyl Composites: A New Biomaterial for the Prevention of Wound Infections
光诱导沸石-亚硝酰基复合材料释放 NO:一种预防伤口感染的新型生物材料
  • 批准号:
    1105296
  • 财政年份:
    2011
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Designed Photoactive Metal Nitrosyls for Site-specific NO Delivery
设计用于特定位点 NO 传递的光活性金属亚硝基化合物
  • 批准号:
    0957251
  • 财政年份:
    2010
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Chemistry of Metal Nitrosyls with Photolabile NO
金属亚硝基化合物与光不稳定 NO 的化学
  • 批准号:
    0553405
  • 财政年份:
    2006
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Alkane Oxidation Catalyzed by Mononuclear Non-Heme Iron Complexes
单核非血红素铁配合物催化烷烃氧化
  • 批准号:
    9818492
  • 财政年份:
    1999
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant

相似海外基金

ERI: Additive Manufacturing of Polymer-Matrix Composites with High Concentration of Silicon-Carbide Particles by Novel Digital Light Projection
ERI:通过新型数字光投影增材制造高浓度碳化硅颗粒的聚合物基复合材料
  • 批准号:
    2301462
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Visible light-driven photocatalyst composites based on clay minerals including Fe impurities as a reaction field
基于含铁杂质的粘土矿物作为反应场的可见光驱动光催化剂复合材料
  • 批准号:
    22K18998
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Visible Light Mediated Refinery Waste Degradation using Nanoparticle/Niobium Oxide Composites
使用纳米粒子/氧化铌复合材料进行可见光介导的炼油厂废物降解
  • 批准号:
    572271-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 45万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of hexagonal boron nitride reinforced light curable dental resin composites
六方氮化硼增强光固化牙科树脂复合材料的研制
  • 批准号:
    2590233
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Visible Light Mediated Refinery Waste Degradation using Niobium Oxide Composites
使用氧化铌复合材料进行可见光介导的炼油厂废物降解
  • 批准号:
    562593-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    University Undergraduate Student Research Awards
Nanocluster-polymer composites for light emitters, gas sensors and electrodes
用于光发射器、气体传感器和电极的纳米团簇聚合物复合材料
  • 批准号:
    2615939
  • 财政年份:
    2020
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Assessing the Feasibility of Producing Ultra-light Weight Kevlar Composites through Epoxy HPRTM Technology
评估通过环氧 HPRTM 技术生产超轻凯夫拉尔复合材料的可行性
  • 批准号:
    538517-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 45万
  • 项目类别:
    Engage Grants Program
Light-Induced Click Chemistry Using Nanoparticle Perovskite Composites
使用纳米颗粒钙钛矿复合材料的光诱导点击化学
  • 批准号:
    523169-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 45万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of a novel method for production of highly conductive polymer composites with low cost, light weight, and minimum environmental impact
开发一种低成本、轻质且对环境影响最小的高导电聚合物复合材料生产新方法
  • 批准号:
    475400-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Development of a novel method for production of highly conductive polymer composites with low cost, light weight, andminimum environmental impact
开发一种低成本、轻质且对环境影响最小的高导电聚合物复合材料生产新方法
  • 批准号:
    475400-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了