Phase mixing in the fluid mechanics and kinetic theory

流体力学和动力学理论中的相混合

基本信息

  • 批准号:
    1413177
  • 负责人:
  • 金额:
    $ 12.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-06-15 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

Nonlinear mixing is a ubiquitous behavior observed in fluids and plasmas which plays an important role in understanding certain aspects of atmosphere and ocean sciences, turbulence, astrophysics and controlled fusion. For example, it is thought to be an important organizing mechanism in atmospheric dynamics that helps to explain why hurricanes retain their characteristic vortex shape for extended periods of time. Despite being a fundamental physical mechanism, the theoretical and mathematical analysis of nonlinear phase mixing has remained elusive. Moreover, many of these effects are difficult to isolate in computational or physical experiments and here mathematical analysis can provide important insights. This project specifically aims to expand our mathematical understanding by studying the effect in a variety of fundamental 'case studies' found in fluid mechanics and plasma physics.The purpose of this program is to further the mathematical analysis of nonlinear phase mixing, generally regarded as difficult due to the appearance of highly non-normal linear evolutions and unusual regularity issues intertwined with subtle nonlinear resonances. The PI will work to develop new tools necessary to approach these problems with a focus on working towards four specific settings: the vanishing viscosity limit of the incompressible Navier-Stokes equations (NSE) near the 2D Couette flow, the nonlinear instability of 3D shear flows, inviscid 'vortex axisymmetrization' in 2D Euler and Landau damping in Vlasov-Poisson (or Vlasov-Maxwell) in presence of external magnetic fields. Many related physically relevant problems exist, and may serve as intermediate steps or additional lines of research. The work in fluid mechanics will expand further on ideas employed by the PI and collaborator Nader Masmoudi in the recent work on the stability of 2D Couette flow [arXiv:1306.5028], especially the use of adaptive coordinate systems and the construction of norms which account for weakly nonlinear resonances and the non-normal transient linear behavior. The work in kinetic theory will further develop techniques used in the work of the PI and collaborators Nader Masmoudi and Clement Mouhot on Landau damping [arXiv:1311.2870], especially the efficient treatment of the plasma echoes. Most likely, in order to expand the range of kinetic theory applications, some ideas from the work in fluid mechanics may need to be adapted to the kinetic setting.
非线性混合是在流体和等离子体中观察到的一种无处不在的行为,它在理解大气和海洋科学的某些方面,湍流,天体物理学和受控融合方面起着重要作用。例如,它被认为是大气动力学中的重要组织机制,有助于解释为什么飓风在长时间内保留其特征性的涡旋形状。尽管是基本的物理机制,但非线性相混合的理论和数学分析仍然难以捉摸。此外,这些效果中的许多很难在计算或物理实验中分离,在这里数学分析可以提供重要的见解。该项目特别旨在通过研究在流体力学和等离子体物理学中发现的各种基本“案例研究”中的效果来扩展我们的数学理解。该程序的目的是进一步对非线性相混合的数学分析,通常由于高度非正常的线性演化的出现而被认为是困难的,因此很难与非线性的规律性相互互动,而不是属于非线性的不合理性。 The PI will work to develop new tools necessary to approach these problems with a focus on working towards four specific settings: the vanishing viscosity limit of the incompressible Navier-Stokes equations (NSE) near the 2D Couette flow, the nonlinear instability of 3D shear flows, inviscid 'vortex axisymmetrization' in 2D Euler and Landau damping in Vlasov-Poisson (or Vlasov-Maxwell)在外部磁场的情况下。存在许多相关的物理相关问题,并且可以用作中间步骤或其他研究线。流体力学中的工作将进一步扩展到PI和合作者Nader Masmoudi在最近关于2D COUETTE FLOW的稳定性[ARXIV:1306.5028]的稳定性中所采用的想法,尤其是使用适应性坐标系统,尤其是使用规范的构建,这些规范构建了弱的非线性共鸣和非正态的固定性固定持续性固定行为。动力学理论的工作将进一步开发用于PI和合作者Nader Masmoudi和Clement Mouhot在Landau Damping [Arxiv:1311.2870]中使用的技术,尤其是对等离子体回声的有效处理。为了扩大动力学理论应用的范围,最有可能的是流体力学中的某些想法可能需要适应动力学环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Bedrossian其他文献

Jacob Bedrossian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Bedrossian', 18)}}的其他基金

Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
  • 批准号:
    2348453
  • 财政年份:
    2023
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
Conference: CRM Thematic Semester Spring 2022: Probabilities and PDEs
会议:2022 年春季 CRM 主题学期:概率和偏微分方程
  • 批准号:
    2202247
  • 财政年份:
    2022
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
Coherent Structure, Chaos, and Turbulence in Fluid Mechanics
流体力学中的相干结构、混沌和湍流
  • 批准号:
    2108633
  • 财政年份:
    2021
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Standard Grant
CAREER: Inviscid Limits and Stability at High Reynolds Numbers
职业:高雷诺数下的无粘极限和稳定性
  • 批准号:
    1552826
  • 财政年份:
    2016
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Continuing Grant
Phase mixing in the fluid mechanics and kinetic theory
流体力学和动力学理论中的相混合
  • 批准号:
    1462029
  • 财政年份:
    2014
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1103765
  • 财政年份:
    2011
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Fellowship Award

相似国自然基金

基于16S rDNA微单倍型标记的混合斑体液识别和身份溯源研究
  • 批准号:
    82271927
  • 批准年份:
    2022
  • 资助金额:
    53.00 万元
  • 项目类别:
    面上项目
基于16S rDNA微单倍型标记的混合斑体液识别和身份溯源研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于RNA单倍型分型解析多体液混合斑的探索性研究
  • 批准号:
    82171876
  • 批准年份:
    2021
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
组织特异性甲基化及其连锁SNP在混合斑鉴定中的应用研究
  • 批准号:
    81701868
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Functional improvement of mixing promotion in fluid equipment by elucidating the universal statistical law of two-phase turbulence
通过阐明两相湍流的普遍统计规律改进流体设备中的混合促进功能
  • 批准号:
    22H01403
  • 财政年份:
    2022
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of mixing and diffusion mechanisms with phase-separation of multi-component fluid under cryogenic high-pressure conditions
低温高压条件下多组分流体相分离的混合和扩散机制研究
  • 批准号:
    22H01686
  • 财政年份:
    2022
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of non-equilibrium phase change at gas-liquid interface mechanism for mixture gas and its application to molecular multi-phase fluid dynamics
混合气体气液界面非平衡相变机理的阐明及其在分子多相流体动力学中的应用
  • 批准号:
    20K04277
  • 财政年份:
    2020
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Observation of Dynamic Fluctuation at Phase Changes and Study on the Mechanism
相变时动态涨落的观测及机理研究
  • 批准号:
    19H02671
  • 财政年份:
    2019
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Phase separation microscopic structures of ionic liquid+ionic liquid mixtures
离子液体混合物的相分离微观结构
  • 批准号:
    18K14039
  • 财政年份:
    2018
  • 资助金额:
    $ 12.03万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了