EAPSI: Estimating methane and carbon dioxide emissions from the Three Gorges Reservoir in China
EAPSI:估算中国三峡水库的甲烷和二氧化碳排放量
基本信息
- 批准号:1414818
- 负责人:
- 金额:$ 0.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Fellowship Award
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Three Gorges Reservoir (TGR) in China is one of the largest reservoir systems in the world. Environmental concerns of the TGR construction and operation, such as nutrient enrichment of reservoir waters, algal blooms, fragmentation of critical habitats, and greenhouse gas emissions (methane and carbon dioxide) from the reservoir area, have drawn global concern. Studies of methane (CH4) and carbon dioxide (CO2) production from the TGR and other large reservoirs worldwide has demonstrated that hydroelectric power is not a carbon-neutral energy source. However, more rigorous methods of estimating reservoir carbon emissions are still necessary. In collaboration with Dr. Zhe Li, a noted expert on reservoir biogeochemistry at Chongqing University, this project will use statistical and geospatial tools to analyze data from ongoing monitoring of CH4 and CO2 fluxes, water quality, and reservoir characteristics to provide a comprehensive estimate of both CH4 and CO2 emissions for the TGR. The approach developed in this project will help to estimate CH4 and CO2 emissions for other reservoir systems around the world. This project will use statistical and geospatial tools to create a spatially-heterogeneous estimate of CH4 and CO2 emissions from the TGR. The proposed work will integrate geospatial analysis into a long-term study of reservoir carbon fluxes. Multivariate statistics and geospatial tools in ArcGIS will be utilized to determine spatially-heterogeneous relationships between reservoir properties - such as depth and nutrient levels - and carbon emissions. The approach developed in this project can be used to predict how greenhouse gas emissions may change in the TGR under various management regimes, and will be applied to other reservoir systems. Overall, this project will help to advance the current methods of estimating greenhouse gas emissions from reservoir systems and can aid in understanding the carbon budget of freshwater systems. This NSF EAPSI award is funded in collaboration with the Chinese Ministry of Science and Technology.
中国三峡水库是世界上最大的水库系统之一。三峡工程建设和运行过程中出现的环境问题,如库区沃茨富营养化、藻类水华、关键生境破碎化、库区温室气体(甲烷和二氧化碳)排放等,已引起全球关注。对三峡水库和世界各地其他大型水库产生的甲烷(CH4)和二氧化碳(CO2)的研究表明,水力发电不是碳中性能源。然而,仍然需要更严格的方法来估计水库的碳排放量。该项目将与重庆大学著名的水库地球化学专家李哲博士合作,利用统计和地理空间工具分析CH4和CO2通量、水质和水库特征的持续监测数据,以提供三峡库区CH4和CO2排放量的综合估计。该项目中开发的方法将有助于估计世界各地其他水库系统的甲烷和二氧化碳排放量。该项目将使用统计和地理空间工具,对三峡库区甲烷和二氧化碳排放量进行空间异质性估计。拟议的工作将把地理空间分析纳入对储层碳通量的长期研究。将利用ArcGIS中的多元统计和地理空间工具来确定储层特性(如深度和营养水平)与碳排放之间的空间异质关系。本项目开发的方法可用于预测不同管理制度下三峡库区温室气体排放量的变化,并将应用于其他水库系统。总体而言,该项目将有助于推进目前估算水库系统温室气体排放量的方法,并有助于了解淡水系统的碳预算。NSF EAPSI奖是与中国科技部合作资助的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lindsey Witthaus-Yasarer其他文献
Lindsey Witthaus-Yasarer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Evaluating and addressing the impact of COVID-19 restrictions on electronic health records in estimating causal effects
评估和解决 COVID-19 限制对电子健康记录的影响,以估计因果影响
- 批准号:
MR/Z503769/1 - 财政年份:2024
- 资助金额:
$ 0.51万 - 项目类别:
Research Grant
Estimating Risk Measures, with Applications to Finance and Nuclear Safety
评估风险措施,并应用于金融和核安全
- 批准号:
2345330 - 财政年份:2024
- 资助金额:
$ 0.51万 - 项目类别:
Standard Grant
Extreme weather events caused by climate change: Estimating the prevalence of at-risk workers
气候变化引起的极端天气事件:估计高危工人的患病率
- 批准号:
485323 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Operating Grants
Innovative Method for Estimating Flood Flows and Riverbed Topography from Water Surface Video Images Using the Vortex and Wave Principle
利用涡波原理从水面视频图像估算洪水流量和河床地形的创新方法
- 批准号:
23K17776 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of method for estimating post-mortem interval using cadaver microbiome analysis
开发利用尸体微生物组分析估计死后间隔的方法
- 批准号:
23K16375 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Establishment of a Highly Accurate Direct Observation Method for Estimating Dissolved Gas Loads from Land to Coastal Oceans via Submarine Groundwater Discharge
建立高精度直接观测方法来估算海底地下水排放从陆地到沿海海洋的溶解气体负荷
- 批准号:
23K17046 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Marrying into a Tax Bracket: A New Approach to Estimating Tax Elasticities
嫁入税级:估计税收弹性的新方法
- 批准号:
2858465 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Studentship
Methods for Estimating Disease Burden of Seasonal Influenza
估计季节性流感疾病负担的方法
- 批准号:
10682150 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Serocalculator: Estimating Incidence Rates from Serological Data
血清计算器:根据血清学数据估算发病率
- 批准号:
10658478 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别:
Estimating Mediation and Moderation Effects in HIV Care Continuum Intervention Trials for People who Use Drugs
估计吸毒者艾滋病毒护理连续干预试验中的中介和调节效应
- 批准号:
10676648 - 财政年份:2023
- 资助金额:
$ 0.51万 - 项目类别: