Collaborative Research: Modeling Social Interaction and Performance in STEM Learning

协作研究:STEM 学习中的社交互动和绩效建模

基本信息

  • 批准号:
    1418378
  • 负责人:
  • 金额:
    $ 21.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This Research on Education and Learning (REAL) project arises from an October 2014 Ideas Lab on Data-intensive Research to Improve Teaching and Learning. The intentions of that effort were to: (1) bring together researchers from across disciplines to foster novel, transformative, multidisciplinary approaches to using the data in large education-related data sets to create actionable knowledge for improving STEM teaching and learning environments in the medium term; and (2) revolutionize learning in the longer term. In this project, researchers from the Educational Testing Service, Columbia University Teachers' College, Arizona State University, and North Carolina State University will conduct data-driven, exploratory analyses to identify key places where social interactions impact learning outcomes in specific learning environments, with the goal of improving teaching and learning in large-scale STEM courses. This research takes advantage of data traces left in large-scale blended and online learning environments (including massively open online courses, or MOOCs). The researchers will develop a comprehensive model for social learning in the context of such courses that will enable assessment of both the collaborative needs of individuals within the context of a class, and the quality of collaborations they are carrying out. Such diagnoses will allow both instructors and automated systems to provide advice to learners about the peers they might work with to enhance their learning (e.g., regarding the kinds of social interactions that will foster better understanding and development of important disciplinary capabilities). An interdisciplinary team of investigators with expertise in theory-driven educational data mining, natural-language processing, psychometrics, social-network analysis, and computer support for collaborative learning will collaborate to explore when learners in blended and online classes benefit from social interactions, and to understand how to identify more and less productive collaborative interactions. The researchers will use data from three blended and online classes (e.g., log files capturing collaborative discussions, individual and collaborative interactions around well-instrumented examples, peer tutoring sessions, pair programming labs, paired projects) and a variety of data analysis approaches (e.g., text analysis, machine learning) to determine: (1) which cognitive, social, and affective dimensions of need and interaction can be identified from available data; (2) which analyses are useful in providing action-oriented collaboration advice; and (3) what additional types of data may be needed for making such recommendations. This exploration will be grounded in theories of social interactions for learning (e.g., self-explanation, dialectic with oneself and others, zone of proximal development, social learning theory of Bandura, peripheral and centripetal participation).
这个教育和学习研究(真实的)项目源于2014年10月关于数据密集型研究的想法实验室,以改善教学。这项工作的目的是:(1)汇集来自不同学科的研究人员,以促进新的,变革性的,多学科的方法来使用大型教育相关数据集中的数据,以创建可操作的知识,改善STEM教学和学习环境的中期;(2)从长远来看,彻底改变学习。在这个项目中,来自教育考试服务中心、哥伦比亚大学师范学院、亚利桑那州立大学和北卡罗来纳州州立大学的研究人员将进行数据驱动的探索性分析,以确定社会互动在特定学习环境中影响学习成果的关键地方,目标是改善大规模STEM课程的教学。这项研究利用了大规模混合和在线学习环境(包括大规模开放在线课程或MOOC)中留下的数据痕迹。 研究人员将在这些课程的背景下开发一个全面的社会学习模型,以便评估班级背景下个人的协作需求以及他们正在进行的协作质量。这样的诊断将允许教师和自动化系统向学习者提供关于他们可能与之合作的同伴的建议,以增强他们的学习(例如,关于将促进更好地理解和发展重要学科能力的社会互动类型)。具有理论驱动的教育数据挖掘,自然语言处理,心理测量学,社交网络分析和协作学习的计算机支持方面的专业知识的跨学科研究人员团队将合作探索混合和在线课程的学习者何时从社交互动中受益,并了解如何识别更多和更少的生产性协作互动。 研究人员将使用来自三个混合和在线课程的数据(例如,捕获协作讨论、围绕良好仪表化示例的个人和协作交互、对等辅导会话、配对编程实验室、配对项目的日志文件)和各种数据分析方法(例如,文本分析、机器学习)来确定:(1)可以从可用数据中识别需求和交互的哪些认知、社会和情感维度;(2)哪些分析在提供面向行动的协作建议中是有用的;以及(3)可能需要哪些附加类型的数据来做出这样的建议。这种探索将以学习的社会互动理论为基础(例如,自我解释,自我与他人的辩证法,最近发展区,班杜拉的社会学习理论,周边和向心参与)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Danielle McNamara其他文献

Formative Feedback on Student-Authored Summaries in Intelligent Textbooks Using Large Language Models
使用大型语言模型对智能教科书中学生撰写的摘要进行形成性反馈
空间情境模型的更新:认知方式的影响
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    何先友;杨惠;李惠娟;魏玉兵;Danielle McNamara
  • 通讯作者:
    Danielle McNamara
The Landscape of Research on Prior Knowledge and Learning: a Bibliometric Analysis
  • DOI:
    10.1007/s10648-023-09775-9
  • 发表时间:
    2023-05-19
  • 期刊:
  • 影响因子:
    8.800
  • 作者:
    André Bittermann;Danielle McNamara;Bianca A. Simonsmeier;Michael Schneider
  • 通讯作者:
    Michael Schneider

Danielle McNamara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Danielle McNamara', 18)}}的其他基金

Collaborative Research: STEM Learning Embedded in a Machine-in-the-LoopCollaborative Story Writing Game
协作研究:嵌入机器在环协作故事写作游戏中的 STEM 学习
  • 批准号:
    2202496
  • 财政年份:
    2022
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Learning Linkages: Integrating Data Streams of Multiple Modalities and Timescales
协作研究:学习联系:整合多种模式和时间尺度的数据流
  • 批准号:
    1417997
  • 财政年份:
    2014
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Learning Reading Strategies for Science Texts in a Gaming Environment: iSTART vs iTG
在游戏环境中学习科学文本阅读策略:iSTART 与 iTG
  • 批准号:
    1153822
  • 财政年份:
    2011
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Continuing Grant
Learning Reading Strategies for Science Texts in a Gaming Environment: iSTART vs iTG
在游戏环境中学习科学文本阅读策略:iSTART 与 iTG
  • 批准号:
    0735682
  • 财政年份:
    2008
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Continuing Grant
Promoting Active Reading Strategies to Improve Students' Understanding of Science
促进主动阅读策略以提高学生对科学的理解
  • 批准号:
    0241144
  • 财政年份:
    2002
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Promoting Active Reading Strategies to Improve Students' Understanding of Science
促进主动阅读策略以提高学生对科学的理解
  • 批准号:
    0089271
  • 财政年份:
    2000
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344260
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 21.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了