NRI: Collaborative Research: Jointly Learning Language and Affordances
NRI:协作研究:共同学习语言和功能可供性
基本信息
- 批准号:1426452
- 负责人:
- 金额:$ 33.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The investigators of this project envision a world where robots surround us, in our homes, in our hospitals, and in our factories, helping people by delivering medicine, preparing food, and assembling objects. Achieving this vision requires robots to communicate with people about their needs, and then plan their activities to help meet those needs. Previous research has addressed these two problems separately, leading to technical solutions that do not work reliably in real-world situations, and to difficulties in human-robot communication. To solve these problems, we are developing the Physically-Grounded Language with Affordances (PGLA) framework and concentrate our research into two thrusts: 1) enable a robot to observe a patient, then answer a nurse's questions about the patient's activity, and 2) enable a robot to respond to natural language requests in a collaborative cooking task and in a manufacturing setting. We will release our open-source data sets and code, which will have impact in other technical areas beyond robotics, such as computer vision and machine learning. The results of our proposed research will find direct applications in industries such as manufacturing and assistive robotics.This project takes a probabilistic approach to jointly learn to recognize affordances in the environment and predict associated natural language requests and descriptions. Since the affordance map is grounded to perceptual data, our robots will learn to robustly manipulate objects in the physical world, respond to natural language commands, and describe their experiences using words. Our learning approach enables the robot to infer cross-model knowledge from large data sets of people carrying out activities paired with natural language descriptions of the activities, leveraging the strength of each modality to inform the others. Our novel learning algorithms will integrate and learn from multi-domain databases such as the semantic web, visual scenes, and a novel activity database paired with natural language descriptions.
该项目的研究人员设想了一个机器人围绕着我们的世界,在我们的家中,在我们的医院和工厂,通过提供药物,准备食物和组装物品来帮助人们。实现这一愿景需要机器人与人们沟通他们的需求,然后计划他们的活动以帮助满足这些需求。 以前的研究分别解决了这两个问题,导致技术解决方案在现实世界中无法可靠地工作,并且在人类与机器人通信中存在困难。 为了解决这些问题,我们正在开发具有可供性的物理接地语言(PGLA)框架,并将我们的研究集中在两个方面:1)使机器人能够观察患者,然后回答护士关于患者活动的问题,以及2)使机器人能够在协作烹饪任务和制造环境中响应自然语言请求。我们将发布我们的开源数据集和代码,这将对机器人技术以外的其他技术领域产生影响,例如计算机视觉和机器学习。 我们提出的研究结果将直接应用于制造业和辅助机器人等行业。该项目采用概率方法,共同学习识别环境中的启示,并预测相关的自然语言请求和描述。 由于示能图基于感知数据,我们的机器人将学会稳健地操纵物理世界中的物体,响应自然语言命令,并使用文字描述他们的体验。 我们的学习方法使机器人能够从进行活动的人的大型数据集中推断出跨模型知识,并与活动的自然语言描述配对,利用每种模态的优势来通知其他模态。我们的新型学习算法将整合和学习多领域数据库,如语义网,视觉场景,以及与自然语言描述配对的新型活动数据库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefanie Tellex其他文献
Grounding Language Attributes to Objects using Bayesian Eigenobjects
使用贝叶斯特征对象将语言属性基础化为对象
- DOI:
10.1109/iros40897.2019.8968603 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Vanya Cohen;B. Burchfiel;Thao Nguyen;N. Gopalan;Stefanie Tellex;G. Konidaris - 通讯作者:
G. Konidaris
Spoken Language Interaction with Robots: Research Issues and Recommendations, Report from the NSF Future Directions Workshop
与机器人的口语交互:研究问题和建议,美国国家科学基金会未来方向研讨会的报告
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.3
- 作者:
M. Marge;C. Espy;Nigel G. Ward;A. Alwan;Yoav Artzi;Mohit Bansal;Gil;Blankenship;J. Chai;Hal Daumé;Debadeepta Dey;M. Harper;T. Howard;Casey;Kennington;Ivana Kruijff;Dinesh Manocha;Cynthia Matuszek;Ross Mead;Raymond;Mooney;Roger K. Moore;M. Ostendorf;Heather Pon;A. Rudnicky;Matthias;Scheutz;R. Amant;Tong Sun;Stefanie Tellex;D. Traum;Zhou Yu - 通讯作者:
Zhou Yu
Time-Lapse Light Field Photography for Perceiving Non-Lambertian Scenes
用于感知非朗伯场景的延时光场摄影
- DOI:
10.15607/rss.2017.xiii.026 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
John G. Oberlin;Stefanie Tellex - 通讯作者:
Stefanie Tellex
Advantages and Limitations of using Successor Features for Transfer in Reinforcement Learning
在强化学习中使用后继特征进行迁移的优点和局限性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Lucas Lehnert;Stefanie Tellex;M. Littman - 通讯作者:
M. Littman
A Tale of Two DRAGGNs: A Hybrid Approach for Interpreting Action-Oriented and Goal-Oriented Instructions
两个 DRAGGN 的故事:解释面向行动和面向目标的指令的混合方法
- DOI:
10.18653/v1/w17-2809 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Siddharth Karamcheti;Edward C. Williams;Dilip Arumugam;Mina Rhee;N. Gopalan;Lawson L. S. Wong;Stefanie Tellex - 通讯作者:
Stefanie Tellex
Stefanie Tellex的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefanie Tellex', 18)}}的其他基金
Collaborative Research: CPS: Medium: Closing the Teleoperation Gap: Integrating Scene and Network Understanding for Dexterous Control of Remote Robots
协作研究:CPS:中:缩小远程操作差距:集成场景和网络理解以实现远程机器人的灵巧控制
- 批准号:
2038897 - 财政年份:2021
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
EAGER: A Gateway Drone for High School Students
EAGER:面向高中生的网关无人机
- 批准号:
1940970 - 财政年份:2020
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
NRI: Collaborative Research: A Framework for Hierarchical, Probabilistic Planning and Learning
NRI:协作研究:分层、概率规划和学习的框架
- 批准号:
1637614 - 财政年份:2016
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
相似海外基金
NRI/Collaborative Research: Robotic Disassembly of High-Precision Electronic Devices
NRI/合作研究:高精度电子设备的机器人拆卸
- 批准号:
2422640 - 财政年份:2024
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2327702 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Understanding Underlying Risks and Sociotechnical Challenges of Powered Wearable Exoskeleton to Construction Workers
合作研究:NRI:了解建筑工人动力可穿戴外骨骼的潜在风险和社会技术挑战
- 批准号:
2410255 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
NRI: FND: Collaborative Research: DeepSoRo: High-dimensional Proprioceptive and Tactile Sensing and Modeling for Soft Grippers
NRI:FND:合作研究:DeepSoRo:软抓手的高维本体感受和触觉感知与建模
- 批准号:
2348839 - 财政年份:2023
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Reducing Falling Risk in Robot-Assisted Retail Environments
合作研究:NRI:降低机器人辅助零售环境中的跌倒风险
- 批准号:
2132936 - 财政年份:2022
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
- 批准号:
2133019 - 财政年份:2022
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Remotely Operated Reconfigurable Walker Robots for Eldercare
合作研究:NRI:用于老年护理的远程操作可重构步行机器人
- 批准号:
2133075 - 财政年份:2022
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Smart Skins for Robotic Prosthetic Hand
合作研究:NRI:机器人假手智能皮肤
- 批准号:
2221479 - 财政年份:2022
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
Collaborative Research: NRI: Integration of Autonomous UAS in Wildland Fire Management
合作研究:NRI:自主无人机在荒地火灾管理中的整合
- 批准号:
2132798 - 财政年份:2022
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
- 批准号:
2132847 - 财政年份:2022
- 资助金额:
$ 33.78万 - 项目类别:
Standard Grant