EAGER: Discovery of Segmental Sub-Word Structure in Speech
EAGER:语音中分段子词结构的发现
基本信息
- 批准号:1433485
- 负责人:
- 金额:$ 9.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-03-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EArly Concept Grant for Exploratory Research (EAGER) investigates new machine learning techniques for discovering sub-word units in speech for use in automatic speech recognition (ASR). The representation of this EArly Concept Grant for Exploratory Research investigates new machine learning techniques for discovering sub-word units in speech for use in automatic speech recognition (ASR). The representation of words in terms of sub-word units is rarely learned from data, despite significant disagreement among linguists as to the sub-word unit inventory. This project represents exploratory work toward a larger goal of making all aspects of ASR learnable, using scientific insights while being discriminatively trained.In contrast with prior work, speech segments are clustered into units using discriminatively learned segmental similarities, rather than via dynamic time warping or hidden Markov models. Rather than pre-supposing phoneme-like units, multiple heterogeneous unit typesare learned. The project also leverages multi-modal (video, articulatory, and so on) data to improve unit discovery by sharinginformation across modalities. In this exploratory work, the learned units are used in a discriminative model that rescores initial outputs from a standard phone-based recognizer, and the experiments focus on small-/medium-vocabulary recognition.This project explores new ways of discovering the basic units of speech. Beyond improvements to speech recognition, this project hasthe potential for broad impact on other research areas involving sequences with segmental sub-structure (such as text, video,biological data, and financial data) or involving clustering. The results may also include new representations for the study of speechin linguistics and speech science. From a societal perspective, in the long term making speech recognition more learnable will enableimproved porting of the technology to under-served linguistic communities, which do not have the benefit of large data sets or other resources.
这一早期的探索性研究概念资助(AGER)研究了新的机器学习技术,以发现语音中的子词单位,用于自动语音识别(ASR)。这一早期探索性研究的概念拨款的表示研究了新的机器学习技术,用于发现用于自动语音识别(ASR)的语音中的子词单元。尽管语言学家在子词单位清单上存在很大的分歧,但很少从数据中学习到用子词单位来表示单词。这个项目代表了一个更大的目标,即在接受有区别的训练的同时,使用科学的见解,使ASR的所有方面都是可学习的,这是探索性工作。与以前的工作不同,语音片段使用有区别地学习的分段相似性来聚类成单元,而不是通过动态时间扭曲或隐马尔可夫模型。学习了多种不同的单位类型,而不是预先假设类似音素的单位。该项目还利用多模式(视频、发音等)数据,通过在多个模式之间共享信息来改进单元发现。在这项探索性工作中,学习的单元被用在一个区分模型中,该模型重新计算了标准基于音素的识别器的初始输出,实验重点是小词汇量/中等词汇量的识别。本项目探索了发现基本语音单元的新方法。除了语音识别的改进之外,该项目还可能对其他研究领域产生广泛影响,这些领域涉及具有分段子结构的序列(如文本、视频、生物数据和金融数据)或涉及聚类。结果还可能包括语言学和言语科学中言语研究的新表现。从社会的角度来看,从长远来看,提高语音识别的可学性将有助于将这项技术更好地移植到服务不足的语言社区,因为这些社区没有大数据集或其他资源的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karen Livescu其他文献
Discriminatively Structured Graphical Models for Speech Recognition The Graphical Models Team JHU 2001 Summer Workshop
用于语音识别的判别式结构化图形模型图形模型团队 JHU 2001 年夏季研讨会
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
J. Bilmes;G. Zweig;Karen Livescu - 通讯作者:
Karen Livescu
Eating Activity Monitoring in Home Environments Using Smartphone-Based Video Recordings
使用基于智能手机的视频记录来监测家庭环境中的饮食活动
- DOI:
10.1109/dicta56598.2022.10034636 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Bowen Shi;D. Brentari;G. Shakhnarovich;Karen Livescu - 通讯作者:
Karen Livescu
A comparison of training approaches for discriminative segmental models
判别分段模型训练方法的比较
- DOI:
10.21437/interspeech.2014-307 - 发表时间:
2014 - 期刊:
- 影响因子:7.5
- 作者:
Hao Tang;Kevin Gimpel;Karen Livescu - 通讯作者:
Karen Livescu
Feature-based pronunciation modeling for automatic speech recognition
用于自动语音识别的基于特征的发音建模
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Karen Livescu - 通讯作者:
Karen Livescu
DiscreteSLU: A Large Language Model with Self-Supervised Discrete Speech Units for Spoken Language Understanding
DiscreteSLU:具有自监督离散语音单元的大型语言模型,用于口语理解
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Suwon Shon;Kwangyoun Kim;Yi;Prashant Sridhar;Shinji Watanabe;Karen Livescu - 通讯作者:
Karen Livescu
Karen Livescu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karen Livescu', 18)}}的其他基金
RI: Small: From acoustics to semantics: Embedding speech for a hierarchy of tasks
RI:小:从声学到语义:为任务层次结构嵌入语音
- 批准号:
1816627 - 财政年份:2018
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Models of Handshape Articulatory Phonology for Recognition and Analysis of American Sign Language
RI:媒介:协作研究:用于识别和分析美国手语的手形发音音系模型
- 批准号:
1409837 - 财政年份:2014
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
RI: Small: Multi-View Learning of Acoustic Features for Speech Recognition Using Articulatory Measurements
RI:小:使用发音测量进行语音识别的声学特征的多视图学习
- 批准号:
1321015 - 财政年份:2013
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
RI: Medium: Collaborative Research: Explicit Articulatory Models of Spoken Language, with Application to Automatic Speech Recognition
RI:媒介:协作研究:口语显式发音模型及其在自动语音识别中的应用
- 批准号:
0905633 - 财政年份:2009
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
相似海外基金
Data Driven Discovery of New Catalysts for Asymmetric Synthesis
数据驱动的不对称合成新催化剂的发现
- 批准号:
DP240100102 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Discovery Projects
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Research Grant
CAREER: Organic Materials Discovery with the Aid of Digital Crystallography
职业:借助数字晶体学发现有机材料
- 批准号:
2410178 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Planning: Advancing Discovery on a Sustainable National Research Enterprise
规划:推进可持续国家研究企业的发现
- 批准号:
2412406 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a High Throughput Drug Discovery Platform for Protein Degraders
I-Corps:蛋白质降解剂高通量药物发现平台的转化潜力
- 批准号:
2419488 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
- 批准号:
24K08582 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Uncovering the epigenetic face of lung fibrosis for discovery of novel biomarkers and treatments.
揭示肺纤维化的表观遗传面,以发现新的生物标志物和治疗方法。
- 批准号:
MR/X032914/1 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Fellowship
CAREER: Microkinetic Modeling-Driven Discovery of Molecular Catalysts
职业:微动力学模型驱动的分子催化剂发现
- 批准号:
2339481 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Continuing Grant
Conference: Artificial Intelligence for Multidisciplinary Exploration and Discovery (AIMED) in Heterogeneous Catalysis: A Workshop
会议:多相催化中的多学科探索和发现人工智能(AIMED):研讨会
- 批准号:
2409631 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant
Collaborative Research: TRTech-PGR TRACK: Discovery and characterization of small CRISPR systems for virus-based delivery of heritable editing in plants.
合作研究:TRTech-PGR TRACK:小型 CRISPR 系统的发现和表征,用于基于病毒的植物遗传编辑传递。
- 批准号:
2334028 - 财政年份:2024
- 资助金额:
$ 9.99万 - 项目类别:
Standard Grant














{{item.name}}会员




